Suppr超能文献

检测脑肿瘤进展的最佳呈现模式。

Optimal presentation modes for detecting brain tumor progression.

机构信息

Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

AJNR Am J Neuroradiol. 2011 Oct;32(9):1652-7. doi: 10.3174/ajnr.A2596. Epub 2011 Aug 18.

Abstract

BACKGROUND AND PURPOSE

A common task in radiology interpretation is visual comparison of images. The purpose of this study was to compare traditional side-by-side and in-place (flicker) image presentation modes with advanced methods for detecting primary brain tumors on MR imaging.

MATERIALS AND METHODS

We identified 66 patients with gliomas and 3 consecutive brain MR imaging examinations (a "triplet"). A display application that presented images in side-by-side mode with or without flicker display as well as display of image subtraction or automated change detection information (also with and without flicker display) was used by 3 board-certified neuroradiologists. They identified regions of brain tumor progression by using this display application. Each case was reviewed using all modes (side-by-side presentation with and without flicker, subtraction with and without flicker, and change detection with and without flicker), with results compared via a panel rating.

RESULTS

Automated change detection with or without flicker (P < .0027) as well as subtraction with or without flicker (P < .0027) were more sensitive to tumor progression than side-by-side presentation in cases where all 3 raters agreed. Change detection afforded the highest interrater agreement, followed by subtraction. Clinically determined time to progression was longer for cases rated as nonprogressing by using subtraction images and change-detection images both with and without flicker display mode compared with side-by-side presentation.

CONCLUSIONS

Automated change detection and image subtraction, with and without flicker display mode, are superior to side-by-side image comparison.

摘要

背景与目的

放射科诊断中的一项常见任务是对影像进行视觉比较。本研究旨在比较传统的并排(side-by-side)和实时(flicker)影像呈现模式与检测脑部磁共振成像原发性脑肿瘤的先进方法。

材料与方法

我们确定了 66 例脑胶质瘤患者和 3 次连续的脑部磁共振成像检查(“三联体”)。使用一种显示应用程序,以并排模式显示图像,带有或不带有实时显示,以及显示图像减影或自动变化检测信息(也带有或不带有实时显示),由 3 名经过董事会认证的神经放射科医生使用。他们使用该显示应用程序识别脑肿瘤进展的区域。使用所有模式(并排显示,带有或不带有实时显示,减影,带有或不带有实时显示,以及变化检测,带有或不带有实时显示)对每个病例进行回顾,并通过小组评分比较结果。

结果

在所有三位评估者均同意的情况下,自动变化检测,带有或不带有实时显示(P<0.0027)以及减影,带有或不带有实时显示(P<0.0027)在检测肿瘤进展方面比并排显示更敏感。变化检测提供了最高的组内一致性,其次是减影。与并排显示相比,使用减影图像和变化检测图像(带有和不带有实时显示模式)评估为非进展性的病例,临床确定的进展时间更长。

结论

自动变化检测和图像减影,带有和不带有实时显示模式,优于并排图像比较。

相似文献

1
Optimal presentation modes for detecting brain tumor progression.检测脑肿瘤进展的最佳呈现模式。
AJNR Am J Neuroradiol. 2011 Oct;32(9):1652-7. doi: 10.3174/ajnr.A2596. Epub 2011 Aug 18.
10
Automated alternation flicker for the detection of optic disc haemorrhages.自动交替闪光检测视盘出血。
Acta Ophthalmol. 2012 Nov;90(7):645-50. doi: 10.1111/j.1755-3768.2010.02094.x. Epub 2011 Feb 2.

引用本文的文献

3
Utility of image fusion software in identifying shunt malfunction.图像融合软件在识别分流器故障中的效用。
Childs Nerv Syst. 2020 Apr;36(4):749-754. doi: 10.1007/s00381-019-04385-9. Epub 2020 Jan 18.

本文引用的文献

9
Coregistration of head CT comparison studies: assessment of clinical utility.
Acad Radiol. 2003 Mar;10(3):242-8. doi: 10.1016/s1076-6332(03)80097-1.
10
Image registration and subtraction to detect active T(2) lesions in MS: an interobserver study.
J Neurol. 2002 Jun;249(6):767-73. doi: 10.1007/s00415-002-0712-6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验