Ho King Chung, Scalzo Fabien, Sarma Karthik V, Speier William, El-Saden Suzie, Arnold Corey
University of California, Los Angeles, Department of Bioengineering, Los Angeles, California, United States.
University of California, Los Angeles, Department of Computer Science, Los Angeles, California, United States.
J Med Imaging (Bellingham). 2019 Apr;6(2):026001. doi: 10.1117/1.JMI.6.2.026001. Epub 2019 May 22.
Predicting infarct volume from magnetic resonance perfusion-weighted imaging can provide helpful information to clinicians in deciding how aggressively to treat acute stroke patients. Models have been developed to predict tissue fate, yet these models are mostly built using hand-crafted features (e.g., time-to-maximum) derived from perfusion images, which are sensitive to deconvolution methods. We demonstrate the application of deep convolution neural networks (CNNs) on predicting final stroke infarct volume using only the source perfusion images. We propose a deep CNN architecture that improves feature learning and achieves an area under the curve of , outperforming existing tissue fate models. We further validate the proposed deep CNN with existing 2-D and 3-D deep CNNs for images/video classification, showing the importance of the proposed architecture. Our work leverages deep learning techniques in stroke tissue outcome prediction, advancing magnetic resonance imaging perfusion analysis one step closer to an operational decision support tool for stroke treatment guidance.
通过磁共振灌注加权成像预测梗死体积可为临床医生决定如何积极治疗急性中风患者提供有用信息。已开发出预测组织转归的模型,但这些模型大多使用从灌注图像中提取的手工特征(如达峰时间)构建,而这些特征对去卷积方法敏感。我们展示了深度卷积神经网络(CNN)仅使用源灌注图像预测最终中风梗死体积的应用。我们提出了一种深度CNN架构,该架构改进了特征学习,曲线下面积达到 ,优于现有的组织转归模型。我们还用现有的用于图像/视频分类的二维和三维深度CNN对所提出的深度CNN进行了进一步验证,证明了所提出架构的重要性。我们的工作在中风组织转归预测中利用了深度学习技术,使磁共振成像灌注分析向用于中风治疗指导的操作决策支持工具又迈进了一步。