Suppr超能文献

利用深度卷积神经网络基于源磁共振灌注图像预测缺血性脑卒中组织转归

Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images.

作者信息

Ho King Chung, Scalzo Fabien, Sarma Karthik V, Speier William, El-Saden Suzie, Arnold Corey

机构信息

University of California, Los Angeles, Department of Bioengineering, Los Angeles, California, United States.

University of California, Los Angeles, Department of Computer Science, Los Angeles, California, United States.

出版信息

J Med Imaging (Bellingham). 2019 Apr;6(2):026001. doi: 10.1117/1.JMI.6.2.026001. Epub 2019 May 22.

Abstract

Predicting infarct volume from magnetic resonance perfusion-weighted imaging can provide helpful information to clinicians in deciding how aggressively to treat acute stroke patients. Models have been developed to predict tissue fate, yet these models are mostly built using hand-crafted features (e.g., time-to-maximum) derived from perfusion images, which are sensitive to deconvolution methods. We demonstrate the application of deep convolution neural networks (CNNs) on predicting final stroke infarct volume using only the source perfusion images. We propose a deep CNN architecture that improves feature learning and achieves an area under the curve of , outperforming existing tissue fate models. We further validate the proposed deep CNN with existing 2-D and 3-D deep CNNs for images/video classification, showing the importance of the proposed architecture. Our work leverages deep learning techniques in stroke tissue outcome prediction, advancing magnetic resonance imaging perfusion analysis one step closer to an operational decision support tool for stroke treatment guidance.

摘要

通过磁共振灌注加权成像预测梗死体积可为临床医生决定如何积极治疗急性中风患者提供有用信息。已开发出预测组织转归的模型,但这些模型大多使用从灌注图像中提取的手工特征(如达峰时间)构建,而这些特征对去卷积方法敏感。我们展示了深度卷积神经网络(CNN)仅使用源灌注图像预测最终中风梗死体积的应用。我们提出了一种深度CNN架构,该架构改进了特征学习,曲线下面积达到 ,优于现有的组织转归模型。我们还用现有的用于图像/视频分类的二维和三维深度CNN对所提出的深度CNN进行了进一步验证,证明了所提出架构的重要性。我们的工作在中风组织转归预测中利用了深度学习技术,使磁共振成像灌注分析向用于中风治疗指导的操作决策支持工具又迈进了一步。

相似文献

1
Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images.
J Med Imaging (Bellingham). 2019 Apr;6(2):026001. doi: 10.1117/1.JMI.6.2.026001. Epub 2019 May 22.
2
Impact of the reperfusion status for predicting the final stroke infarct using deep learning.
Neuroimage Clin. 2021;29:102548. doi: 10.1016/j.nicl.2020.102548. Epub 2020 Dec 25.
3
Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning.
Stroke. 2018 Jun;49(6):1394-1401. doi: 10.1161/STROKEAHA.117.019740. Epub 2018 May 2.
5
A Machine Learning Approach for Classifying Ischemic Stroke Onset Time From Imaging.
IEEE Trans Med Imaging. 2019 Jul;38(7):1666-1676. doi: 10.1109/TMI.2019.2901445. Epub 2019 Feb 25.
7
Simulated perfusion MRI data to boost training of convolutional neural networks for lesion fate prediction in acute stroke.
Comput Biol Med. 2020 Jan;116:103579. doi: 10.1016/j.compbiomed.2019.103579. Epub 2019 Dec 18.
8
Use of Deep Learning to Predict Final Ischemic Stroke Lesions From Initial Magnetic Resonance Imaging.
JAMA Netw Open. 2020 Mar 2;3(3):e200772. doi: 10.1001/jamanetworkopen.2020.0772.
9
Prediction of Stroke Infarct Growth Rates by Baseline Perfusion Imaging.
Stroke. 2022 Feb;53(2):569-577. doi: 10.1161/STROKEAHA.121.034444. Epub 2021 Sep 30.
10
Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
Int J Comput Assist Radiol Surg. 2020 Feb;15(2):193-201. doi: 10.1007/s11548-019-02082-1. Epub 2019 Oct 31.

引用本文的文献

1
Automatic prediction of stroke treatment outcomes: latest advances and perspectives.
Biomed Eng Lett. 2025 Feb 17;15(3):467-488. doi: 10.1007/s13534-025-00462-y. eCollection 2025 May.
2
A comprehensive review for artificial intelligence on neuroimaging in rehabilitation of ischemic stroke.
Front Neurol. 2024 Mar 28;15:1367854. doi: 10.3389/fneur.2024.1367854. eCollection 2024.
3
Systematic Review of Machine Learning Applied to the Secondary Prevention of Ischemic Stroke.
J Med Syst. 2024 Jan 2;48(1):8. doi: 10.1007/s10916-023-02020-4.
5
Nomograms predict prognosis and hospitalization time using non-contrast CT and CT perfusion in patients with ischemic stroke.
Front Neurosci. 2022 Jul 22;16:912287. doi: 10.3389/fnins.2022.912287. eCollection 2022.
6
Performance of Machine Learning for Tissue Outcome Prediction in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis.
Front Neurol. 2022 Jul 8;13:910259. doi: 10.3389/fneur.2022.910259. eCollection 2022.
7
Tissue outcome prediction in hyperacute ischemic stroke: Comparison of machine learning models.
J Cereb Blood Flow Metab. 2021 Nov;41(11):3085-3096. doi: 10.1177/0271678X211024371. Epub 2021 Jun 23.
9
Artificial Intelligence and Acute Stroke Imaging.
AJNR Am J Neuroradiol. 2021 Jan;42(1):2-11. doi: 10.3174/ajnr.A6883. Epub 2020 Nov 26.
10
Artificial Intelligence in Neuroradiology: Current Status and Future Directions.
AJNR Am J Neuroradiol. 2020 Aug;41(8):E52-E59. doi: 10.3174/ajnr.A6681. Epub 2020 Jul 30.

本文引用的文献

1
Path R-CNN for Prostate Cancer Diagnosis and Gleason Grading of Histological Images.
IEEE Trans Med Imaging. 2019 Apr;38(4):945-954. doi: 10.1109/TMI.2018.2875868. Epub 2018 Oct 12.
2
An EM-based semi-supervised deep learning approach for semantic segmentation of histopathological images from radical prostatectomies.
Comput Med Imaging Graph. 2018 Nov;69:125-133. doi: 10.1016/j.compmedimag.2018.08.003. Epub 2018 Sep 3.
3
Brain tumor segmentation with Deep Neural Networks.
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.
4
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.
6
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
IEEE Trans Med Imaging. 2016 May;35(5):1285-98. doi: 10.1109/TMI.2016.2528162. Epub 2016 Feb 11.
8
Deep learning.
Nature. 2015 May 28;521(7553):436-44. doi: 10.1038/nature14539.
9
Predicting discharge mortality after acute ischemic stroke using balanced data.
AMIA Annu Symp Proc. 2014 Nov 14;2014:1787-96. eCollection 2014.
10
Role of imaging in current acute ischemic stroke workflow for endovascular therapy.
Stroke. 2015 Jun;46(6):1453-61. doi: 10.1161/STROKEAHA.115.009160. Epub 2015 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验