Suppr超能文献

短跑运动员的运动特征不会因疲劳而改变。

Sprinter's motor signature does not change with fatigue.

机构信息

UR CIAMS, Motor Control and Perception Group, Sport Sciences Department, Université de Paris Sud, Bâtiment 335, Bureau 38, 91405 Orsay Cedex, France.

出版信息

Eur J Appl Physiol. 2012 Apr;112(4):1557-68. doi: 10.1007/s00421-011-2107-9. Epub 2011 Aug 19.

Abstract

The aim of this study was to investigate human adaptations to fatigue induced by track sprint repetitions. Eight male sprinters were asked to run 4 × 100 m as quickly as possible with 3 min of recovery. Subjects were filmed (50 Hz) in order to measure stride length and frequency. Velocity was measured by means of radar (250 Hz) while contact and flight times were registered wirelessly by two pressure sensors (400 Hz) embedded under the insole of the subjects' shoes. Contact and flight times were used to calculate stiffness. In addition, blood samples were taken prior to warm-up, 1 min after each 100-m sprint and every 2 min after the last repetition until a lactate peak ([BLa]) was reached. [BLa] did not affect mechanical and stride parameters. Inter-series ANOVA showed that velocity decreased significantly (-3.55%) between Repetition 1 (8.18 ± 0.29 m s(-1)) and Repetition 4 (7.89 ± 0.42 m s(-1)), while [BLa] increased from 6.74 ± 1.15 to 13.58 ± 1.48 mmol l(-1) (p < 0.05). The first main result was that leg stiffness remained constant until Repetition 3 and then dramatically increased at Repetition 4, whereas vertical stiffness remained constant throughout all four repetitions. This behavior could be considered to be a neuromuscular adaptation to fatigue used by skilled athletes. The second main result was that velocity decreased during the second phase (30-80 m) of the entire 100 m. In addition, a PCA revealed three different sprint profiles explaining 88.2% of the total variance: the contact-time-pattern (39.46%), force-pattern (27.96%) and stride-pattern (20.77%). Two different motor signatures were identified with fatigue. In the first, athletes switch from the key variable to another when exhausted without changing their motor behavior (during Repetition 3 and/or Repetition 4). In the second, athletes do not change their motor behavior with fatigue.

摘要

这项研究的目的是调查人体对重复轨道短跑引起的疲劳的适应。要求 8 名男性短跑运动员以最快速度尽可能地跑 4×100m,恢复期为 3 分钟。通过拍摄(50Hz)视频来测量步长和频率。通过雷达(250Hz)测量速度,同时通过两个压力传感器(400Hz)无线记录接触和腾空时间,这两个压力传感器嵌入运动员鞋的鞋底。接触和腾空时间用于计算刚度。此外,在热身前、每次 100m 短跑后 1 分钟以及最后一次重复后每 2 分钟采集血样,直到达到乳酸峰值([BLa])。[BLa]不影响机械和步幅参数。组间 ANOVA 显示,速度从第 1 次重复(8.18±0.29 m s(-1))显著下降到第 4 次重复(7.89±0.42 m s(-1)),而 [BLa] 从 6.74±1.15 增加到 13.58±1.48 mmol l(-1)(p<0.05)。第一个主要结果是,腿部刚度在第 3 次重复之前保持不变,然后在第 4 次重复时急剧增加,而垂直刚度在所有 4 次重复中保持不变。这种行为可以被认为是熟练运动员对疲劳的神经肌肉适应。第二个主要结果是,速度在整个 100m 的后半段(30-80m)下降。此外,主成分分析(PCA)揭示了三个不同的短跑特征,解释了总方差的 88.2%:接触时间模式(39.46%)、力模式(27.96%)和步幅模式(20.77%)。疲劳时确定了两种不同的运动特征。在第一种情况下,当运动员精疲力竭时,他们会从关键变量切换到另一个变量,而不会改变他们的运动行为(在第 3 次重复和/或第 4 次重复期间)。在第二种情况下,运动员不会随着疲劳而改变他们的运动行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验