Department of Chemistry and Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, USA.
J Am Chem Soc. 2011 Sep 21;133(37):14534-7. doi: 10.1021/ja205977z. Epub 2011 Aug 30.
To explore the potential of ternary blend bulk heterojunction (BHJ) photovoltaics as a general platform for increasing the attainable performance of organic solar cells, a model system based on poly(3-hexylthiophene) (P3HT) as the donor and two soluble fullerene acceptors, phenyl-C(61)-butyric acid methyl ester (PC(61)BM) and indene-C(60) bisadduct (ICBA), was examined. In all of the solar cells, the overall ratio of polymer to fullerene was maintained at 1:1, while the composition of the fullerene component (PC(61)BM:ICBA ratio) was varied. Photovoltaic devices showed high short-circuit current densities (J(sc)) and fill factors (FF) (>0.57) at all fullerene ratios, while the open-circuit voltage (V(oc)) was found to vary from 0.61 to 0.84 V as the fraction of ICBA was increased. These results indicate that the V(oc) in ternary blend BHJ solar cells is not limited to the smallest V(oc) of the corresponding binary blend solar cells but can be varied between the extreme V(oc) values without significant effect on the J(sc) or FF. By extension, this result suggests that ternary blends provide a potentially effective route toward maximizing the attainable J(sc)V(oc) product (which is directly proportional to the solar cell efficiency) in BHJ solar cells and that with judicious selection of donor and acceptor components, solar cells with efficiencies exceeding the theoretical limits for binary blend solar cells could be possible without sacrificing the simplicity of a single active-layer processing step.
为了探索三元共混体异质结(BHJ)光伏作为提高有机太阳能电池性能的通用平台的潜力,我们以聚(3-己基噻吩)(P3HT)为给体和两种可溶性富勒烯受体——苯-C(61)-丁酸甲酯(PC(61)BM)和茚并-C(60)双加成物(ICBA)——为模型体系进行了研究。在所有的太阳能电池中,聚合物与富勒烯的总体比例保持在 1:1,而富勒烯组分的组成(PC(61)BM:ICBA 比例)有所变化。光伏器件在所有富勒烯比例下均表现出高短路电流密度(J(sc))和填充因子(FF)(>0.57),而开路电压(V(oc))则随着 ICBA 分数的增加而从 0.61 变为 0.84 V。这些结果表明,三元共混体 BHJ 太阳能电池的 V(oc) 不受相应二元共混体太阳能电池中最小 V(oc)的限制,而是可以在不显著影响 J(sc)或 FF 的情况下在两个极端 V(oc)值之间变化。由此可以推断,三元共混体为最大限度地提高 BHJ 太阳能电池的可达到 J(sc)V(oc)乘积(与太阳能电池效率直接成正比)提供了一条潜在的有效途径,并且通过明智地选择给体和受体组件,即使不牺牲单一活性层处理步骤的简单性,也有可能制造出效率超过二元共混体太阳能电池理论极限的太阳能电池。