Suppr超能文献

在聚(己基噻吩)衍生物中,通过控制共轭主链扭转来提高开路电压,同时保持高短路电流。

Controlled conjugated backbone twisting for an increased open-circuit voltage while having a high short-circuit current in poly(hexylthiophene) derivatives.

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, United States.

出版信息

J Am Chem Soc. 2012 Mar 21;134(11):5222-32. doi: 10.1021/ja210954r. Epub 2012 Mar 2.

Abstract

Conjugated polymers with nearly planar backbones have been the most commonly investigated materials for organic-based electronic devices. More twisted polymer backbones have been shown to achieve larger open-circuit voltages in solar cells, though with decreased short-circuit current densities. We systematically impose twists within a family of poly(hexylthiophene)s and examine their influence on the performance of polymer:fullerene bulk heterojunction (BHJ) solar cells. A simple chemical modification concerning the number and placement of alkyl side chains along the conjugated backbone is used to control the degree of backbone twisting. Density functional theory calculations were carried out on a series of oligothiophene structures to provide insights on how the sterically induced twisting influences the geometric, electronic, and optical properties. Grazing incidence X-ray scattering measurements were performed to investigate how the thin-film packing structure was affected. The open-circuit voltage and charge-transfer state energy of the polymer:fullerene BHJ solar cells increased substantially with the degree of twist induced within the conjugated backbone--due to an increase in the polymer ionization potential--while the short-circuit current decreased as a result of a larger optical gap and lower hole mobility. A controlled, moderate degree of twist along the poly(3,4-dihexyl-2,2':5',2''-terthiophene) (PDHTT) conjugated backbone led to a 19% enhancement in the open-circuit voltage (0.735 V) vs poly(3-hexylthiophene)-based devices, while similar short-circuit current densities, fill factors, and hole-carrier mobilities were maintained. These factors resulted in a power conversion efficiency of 4.2% for a PDHTT:[6,6]-phenyl-C(71)-butyric acid methyl ester (PC(71)BM) blend solar cell without thermal annealing. This simple approach reveals a molecular design avenue to increase open-circuit voltage while retaining the short-circuit current.

摘要

具有近乎平面骨架的共轭聚合物一直是用于有机电子器件的最常见的研究材料。虽然短路电流密度降低,但具有更大扭转聚合物骨架的太阳能电池已显示出实现更大开路电压的能力。我们在一系列聚(己基噻吩)中系统地引入扭曲,并研究它们对聚合物:富勒烯体异质结(BHJ)太阳能电池性能的影响。通过沿共轭主链上的烷基侧链的数量和位置进行简单的化学修饰来控制主链扭曲的程度。对一系列寡噻吩结构进行了密度泛函理论计算,以提供关于空间位阻诱导的扭曲如何影响几何、电子和光学性质的见解。掠入射 X 射线散射测量用于研究薄膜堆积结构如何受到影响。聚合物:富勒烯 BHJ 太阳能电池的开路电压和电荷转移态能量随着共轭主链中诱导的扭曲程度显著增加-由于聚合物电离势的增加-而短路电流由于较大的光学间隙和较低的空穴迁移率而降低。在聚(3,4-二己基-2,2':5',2''-三噻吩)(PDHTT)共轭主链上进行适度的受控扭曲导致开路电压(0.735 V)相对于基于聚(3-己基噻吩)的器件提高了 19%,而相似的短路电流密度、填充因子和空穴载流子迁移率得以维持。这些因素导致 PDHTT:[6,6]-苯基-C(71)-丁酸甲酯(PC(71)BM)共混太阳能电池在未经热退火的情况下的功率转换效率为 4.2%。这种简单的方法揭示了一种提高开路电压同时保留短路电流的分子设计途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验