Suppr超能文献

用于经皮接种的纳米颗粒。

Nanoparticles for transcutaneous vaccination.

机构信息

Department of Drug Delivery, Helmholtz-Institute for Pharmaceutical Research Saarland-HIPS, Helmholtz-Center for Infection Research-HZI, Saarbruecken, Germany.

出版信息

Microb Biotechnol. 2012 Mar;5(2):156-67. doi: 10.1111/j.1751-7915.2011.00284.x. Epub 2011 Aug 19.

Abstract

The living epidermis and dermis are rich in antigen presenting cells (APCs). Their activation can elicit a strong humoral and cellular immune response as well as mucosal immunity. Therefore, the skin is a very attractive site for vaccination, and an intradermal application of antigen may be much more effective than a subcutaneous or intramuscular injection. However, the stratum corneum (SC) is a most effective barrier against the invasion of topically applied vaccines. Products which have reached the stage of clinical testing, avoid this problem by injecting the nano-vaccine intradermally or by employing a barrier disrupting method and applying the vaccine to a relatively large skin area. Needle-free vaccination is desirable from a number of aspects: ease of application, improved patient acceptance and less risk of infection among them. Nanocarriers can be designed in a way that they can overcome the SC. Also incorporation into nanocarriers protects instable antigen from degradation, improves uptake and processing by APCs, and facilitates endosomal escape and nuclear delivery of DNA vaccines. In addition, sustained release systems may build a depot in the tissue gradually releasing antigen which may avoid booster doses. Therefore, nanoformulations of vaccines for transcutaneous immunization are currently a very dynamic field of research. Among the huge variety of nanocarrier systems that are investigated hopes lie on ultra-flexible liposomes, superfine rigid nanoparticles and nanocarriers, which are taken up by hair follicles. The potential and pitfalls associated with these three classes of carriers will be discussed.

摘要

活表皮和真皮富含抗原呈递细胞 (APCs)。它们的激活可以引发强烈的体液和细胞免疫反应以及黏膜免疫。因此,皮肤是接种疫苗的非常有吸引力的部位,抗原的皮内应用可能比皮下或肌肉内注射更有效。然而,角质层 (SC) 是阻止经皮应用疫苗入侵的最有效屏障。已经进入临床测试阶段的产品通过皮内注射纳米疫苗或采用破坏屏障的方法并将疫苗应用于相对较大的皮肤区域来避免这个问题。无针接种在许多方面都是理想的:易于应用、提高患者接受度和降低感染风险等。纳米载体可以设计成能够克服 SC 的方式。此外,将抗原纳入纳米载体可以保护不稳定的抗原免受降解,提高 APC 的摄取和处理,并促进 DNA 疫苗的内体逃逸和核传递。此外,缓释系统可以在组织中逐渐建立一个储存库,逐渐释放抗原,从而避免加强剂量。因此,用于经皮免疫的疫苗的纳米制剂是目前一个非常活跃的研究领域。在正在研究的大量纳米载体系统中,希望寄托在超灵活的脂质体、超细刚性纳米粒子和被毛囊吸收的纳米载体上。将讨论这三类载体的潜力和陷阱。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ab53/3815776/c883224d2a6d/mbt0005-0156-f1.jpg

相似文献

1
Nanoparticles for transcutaneous vaccination.
Microb Biotechnol. 2012 Mar;5(2):156-67. doi: 10.1111/j.1751-7915.2011.00284.x. Epub 2011 Aug 19.
2
Current Progress in Particle-Based Systems for Transdermal Vaccine Delivery.
Front Immunol. 2020 Feb 26;11:266. doi: 10.3389/fimmu.2020.00266. eCollection 2020.
3
Transcutaneous vaccines: novel advances in technology and delivery for overcoming the barriers.
Vaccine. 2011 Aug 26;29(37):6179-90. doi: 10.1016/j.vaccine.2011.06.086. Epub 2011 Jul 6.
4
A highlight on lipid based nanocarriers for transcutaneous immunization.
Curr Pharm Biotechnol. 2015;16(4):371-9. doi: 10.2174/1389201016666150206105552.
5
Transfollicular delivery takes root: the future for vaccine design?
Expert Rev Vaccines. 2014 Jan;13(1):5-7. doi: 10.1586/14760584.2014.862500.
6
Overcoming or circumventing the stratum corneum barrier for efficient transcutaneous immunization.
Drug Discov Today. 2018 Jan;23(1):181-186. doi: 10.1016/j.drudis.2017.09.017. Epub 2017 Oct 5.
7
Frontiers of transcutaneous vaccination systems: novel technologies and devices for vaccine delivery.
Vaccine. 2013 May 1;31(19):2403-15. doi: 10.1016/j.vaccine.2013.03.022. Epub 2013 Mar 21.
8
Nanoparticles for nasal vaccination.
Adv Drug Deliv Rev. 2009 Feb 27;61(2):140-57. doi: 10.1016/j.addr.2008.09.005. Epub 2008 Dec 13.
9
Effective transcutaneous immunization by antigen-loaded flexible liposome in vivo.
Int J Nanomedicine. 2011;6:3241-50. doi: 10.2147/IJN.S26152. Epub 2011 Dec 8.

引用本文的文献

1
Functionally Designed Nanovaccines against SARS-CoV-2 and Its Variants.
Vaccines (Basel). 2024 Jul 12;12(7):764. doi: 10.3390/vaccines12070764.
2
Delivery of nucleic acids using nanomaterials.
Mol Biomed. 2023 Dec 14;4(1):48. doi: 10.1186/s43556-023-00160-0.
3
Short Carbon Nanotube-Based Delivery of mRNA for HIV-1 Vaccines.
Biomolecules. 2023 Jul 7;13(7):1088. doi: 10.3390/biom13071088.
4
Nanovaccines: Merits, and diverse roles in boosting antitumor immune responses.
Hum Vaccin Immunother. 2022 Nov 30;18(6):2119020. doi: 10.1080/21645515.2022.2119020. Epub 2022 Sep 28.
5
Antigen Uptake After Intradermal Microinjection Depends on Antigen Nature and Formulation, but Not on Injection Depth.
Front Allergy. 2021 Apr 8;2:642788. doi: 10.3389/falgy.2021.642788. eCollection 2021.
6
Nanocarriers for Skin Applications: Where Do We Stand?
Angew Chem Int Ed Engl. 2022 Jan 17;61(3):e202107960. doi: 10.1002/anie.202107960. Epub 2021 Oct 1.
7
Current Progress in Particle-Based Systems for Transdermal Vaccine Delivery.
Front Immunol. 2020 Feb 26;11:266. doi: 10.3389/fimmu.2020.00266. eCollection 2020.
9
10
Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines?
Pharm Res. 2016 Sep;33(9):2078-97. doi: 10.1007/s11095-016-1979-0. Epub 2016 Jul 5.

本文引用的文献

1
Transcutaneous immunization: an overview of advantages, disease targets, vaccines, and delivery technologies.
Annu Rev Chem Biomol Eng. 2010;1:175-201. doi: 10.1146/annurev-chembioeng-073009-100948.
2
Quantum dot penetration into viable human skin.
Nanotoxicology. 2012 Mar;6(2):173-85. doi: 10.3109/17435390.2011.569092. Epub 2011 Apr 1.
3
LC/MS analysis of stratum corneum lipids: ceramide profiling and discovery.
J Lipid Res. 2011 Jun;52(6):1211-1221. doi: 10.1194/jlr.M014456. Epub 2011 Mar 28.
4
Topical and mucosal liposomes for vaccine delivery.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011 Jul-Aug;3(4):356-75. doi: 10.1002/wnan.131. Epub 2011 Feb 25.
5
Penetration of quantum dot particles through human skin.
J Biomed Nanotechnol. 2010 Oct;6(5):586-95. doi: 10.1166/jbn.2010.1155.
6
Nanoparticles and microparticles for skin drug delivery.
Adv Drug Deliv Rev. 2011 May 30;63(6):470-91. doi: 10.1016/j.addr.2011.01.012. Epub 2011 Feb 23.
7
Immunology: Prevention of infections in patients with autoimmune diseases.
Nat Rev Rheumatol. 2011 Apr;7(4):198-200. doi: 10.1038/nrrheum.2011.14. Epub 2011 Feb 8.
10
Selective follicular targeting by modification of the particle sizes.
J Control Release. 2011 Feb 28;150(1):45-8. doi: 10.1016/j.jconrel.2010.11.015. Epub 2010 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验