Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
J Bacteriol. 2011 Oct;193(20):5637-48. doi: 10.1128/JB.05510-11. Epub 2011 Aug 19.
The global regulator CodY controls the expression of dozens of metabolic genes and genes mediating adaptation to nutrient availability in many low-G+C Gram-positive bacteria. Branched-chain amino acids L-isoleucine, L-leucine, and L-valine (ILV) activate CodY both in vivo and in vitro, and genes that direct their synthesis (ilv, ybgE, and ywaA) are highly repressed by CodY, creating a potential negative feedback loop. The nucleoside triphosphate GTP also activates CodY in vitro, but the evidence for activation by GTP in vivo is limited and indirect. We constructed a Bacillus subtilis strain (ybgE bcd ywaA) that is unable to convert branched-chain α-keto acids to ILV or to use ILV as a precursor for branched-chain fatty acid synthesis. Unexpectedly, the strain was not viable on rich medium. Supplementing rich medium with short, branched-chain fatty acids or derepressing expression of genes for de novo ILV synthesis bypassed the original lethality, restoring growth and showing that the lack of viability was due to insufficient intracellular production of the precursors of branched-chain fatty acids. Spontaneous extragenic suppressor mutants that arose in the triple mutant population proved to have additional mutations in guaA or guaB or codY. Expression of ILV biosynthetic genes in codY mutants was increased. The gua mutations caused guanine/guanosine auxotrophy and led to partial derepression of direct CodY-repressed targets, including ILV biosynthetic genes, under conditions similar to those that caused the original lethality. We conclude that a guanine derivative, most likely GTP, controls CodY activity in vivo.
全球调节因子 CodY 控制着许多低 GC 革兰氏阳性细菌中数十种代谢基因和适应营养可用性的基因的表达。支链氨基酸 L-异亮氨酸、L-亮氨酸和 L-缬氨酸(ILV)在体内和体外都激活 CodY,而指导其合成的基因(ilv、ybgE 和 ywaA)被 CodY 高度抑制,形成潜在的负反馈回路。核苷三磷酸 GTP 也在体外激活 CodY,但体内 GTP 激活的证据有限且间接。我们构建了一种枯草芽孢杆菌菌株(ybgE bcd ywaA),该菌株无法将支链α-酮酸转化为 ILV,也无法将 ILV 用作支链脂肪酸合成的前体。出乎意料的是,该菌株在丰富培养基上无法存活。在丰富培养基中添加短的支链脂肪酸或解除从头合成 ILV 的基因表达可绕过原始致死性,恢复生长,并表明缺乏活力是由于支链脂肪酸前体的细胞内产量不足所致。在三重突变体群体中出现的自发外基因抑制突变体被证明在 guaA 或 guaB 或 codY 中有额外的突变。ILV 生物合成基因在 codY 突变体中的表达增加。gua 突变导致鸟嘌呤/鸟苷营养缺陷,并导致直接受 CodY 抑制的靶基因(包括 ILV 生物合成基因)在类似于导致原始致死性的条件下部分去抑制。我们得出结论,一种鸟嘌呤衍生物,很可能是 GTP,在体内控制 CodY 活性。