Suppr超能文献

在枯草芽孢杆菌的葡萄糖和丙酮酸代谢中,转录起始位点的腺嘌呤或鸟嘌呤种类依赖于严格的转录控制的大量参与。

Heavy involvement of stringent transcription control depending on the adenine or guanine species of the transcription initiation site in glucose and pyruvate metabolism in Bacillus subtilis.

机构信息

Department of Biotechnology, Faculty of Life Science and Biotechnology, Fukuyama University, Fukuyama, Japan.

出版信息

J Bacteriol. 2010 Mar;192(6):1573-85. doi: 10.1128/JB.01394-09. Epub 2010 Jan 15.

Abstract

In Bacillus subtilis cells, the GTP level decreases and the ATP level increases upon a stringent response. This reciprocal change in the concentrations of the substrates of RNA polymerase affects the rate of transcription initiation of certain stringent genes depending on the purine species at their transcription initiation sites. DNA microarray analysis suggested that not only the rrn and ilv-leu genes encoding rRNAs and the enzymes for synthesis of branched-chain amino acids, respectively, but also many genes, including genes involved in glucose and pyruvate metabolism, might be subject to this kind of stringent transcription control. Actually, the ptsGHI and pdhABCD operons encoding the glucose-specific phosphoenolpyruvate:sugar phosphotransferase system and the pyruvate dehydrogenase complex were found to be negatively regulated, like rrn, whereas the pycA gene encoding pyruvate carboxylase and the alsSD operon for synthesis of acetoin from pyruvate were positively regulated, like ilv-leu. Replacement of the guanine at position 1 and/or position 2 of ptsGHI and at position 1 of pdhABCD (transcription initiation base at position 1) by adenine changed the negative stringent control of these operons in the positive direction. The initiation bases for transcription of pdhABCD and pycA were newly determined. Then the promoter sequences of these stringent operons were aligned, and the results suggested that the presence of a guanine(s) and the presence of an adenine(s) at position 1 and/or position 2 might be indispensable for negative and positive stringent control, respectively. Such stringent transcription control that affects the transcription initiation rate through reciprocal changes in the GTP and ATP levels likely occurs for numerous genes of B. subtilis.

摘要

在枯草芽孢杆菌细胞中,当出现严格反应时,GTP 水平下降,而 ATP 水平上升。RNA 聚合酶底物浓度的这种相互变化会影响某些严格基因的转录起始速率,这取决于其转录起始位点的嘌呤种类。DNA 微阵列分析表明,不仅编码 rRNA 和用于合成支链氨基酸的酶的 rrn 和 ilv-leu 基因,而且许多基因,包括参与葡萄糖和丙酮酸代谢的基因,可能受到这种严格转录控制。实际上,编码葡萄糖特异性磷酸烯醇丙酮酸:糖磷酸转移酶系统和丙酮酸脱氢酶复合物的 ptsGHI 和 pdhABCD 操纵子被发现像 rrn 一样受到负调控,而编码丙酮酸羧化酶的 pycA 基因和用于从丙酮酸合成乙酰的 alsSD 操纵子像 ilv-leu 一样受到正调控。用腺嘌呤替代 ptsGHI 中位置 1 和/或位置 2 以及 pdhABCD 中位置 1 的鸟嘌呤(转录起始位置 1 的碱基)会使这些操纵子的负严格控制向正方向改变。还确定了 pdhABCD 和 pycA 的转录起始碱基。然后对这些严格操纵子的启动子序列进行了比对,结果表明位置 1 和/或位置 2 处存在鸟嘌呤(s)和腺嘌呤(s)可能分别是负严格控制和正严格控制所必需的。这种通过 GTP 和 ATP 水平的相互变化影响转录起始速率的严格转录控制可能发生在枯草芽孢杆菌的许多基因中。

相似文献

7
Moderate expression of the transcriptional regulator ALsR enhances acetoin production by Bacillus subtilis.
J Ind Microbiol Biotechnol. 2013 Sep;40(9):1067-76. doi: 10.1007/s10295-013-1303-5. Epub 2013 Jul 9.
8
Physiologic consequences of glucose transport and phosphoenolpyruvate node modifications in Bacillus subtilis 168.
J Mol Microbiol Biotechnol. 2012;22(3):177-97. doi: 10.1159/000339973. Epub 2012 Jul 26.

引用本文的文献

1
(p)ppGpp-dependent activation of gene expression during nutrient limitation.
mBio. 2025 Aug 18:e0128825. doi: 10.1128/mbio.01288-25.
2
The DnaJK chaperone of post-transcriptionally regulates gene expression through the YlxR(RnpM)/RNase P complex.
mBio. 2025 Mar 12;16(3):e0405324. doi: 10.1128/mbio.04053-24. Epub 2025 Feb 11.
4
Effect and potential mechanism of nitrite reductase B on nitrite degradation by RC4.
Curr Res Food Sci. 2024 Apr 24;8:100749. doi: 10.1016/j.crfs.2024.100749. eCollection 2024.
5
Termination factor Rho mediates transcriptional reprogramming of Bacillus subtilis stationary phase.
PLoS Genet. 2023 Feb 3;19(2):e1010618. doi: 10.1371/journal.pgen.1010618. eCollection 2023 Feb.
6
Sustained Control of Pyruvate Carboxylase by the Essential Second Messenger Cyclic di-AMP in Bacillus subtilis.
mBio. 2021 Feb 22;13(1):e0360221. doi: 10.1128/mbio.03602-21. Epub 2022 Feb 8.
8
Microbial single-cell RNA sequencing by split-pool barcoding.
Science. 2021 Feb 19;371(6531). doi: 10.1126/science.aba5257. Epub 2020 Dec 17.
10
The alarmones (p)ppGpp are part of the heat shock response of Bacillus subtilis.
PLoS Genet. 2020 Mar 16;16(3):e1008275. doi: 10.1371/journal.pgen.1008275. eCollection 2020 Mar.

本文引用的文献

2
Carbon catabolite control of the metabolic network in Bacillus subtilis.
Biosci Biotechnol Biochem. 2009 Feb;73(2):245-59. doi: 10.1271/bbb.80479. Epub 2009 Feb 7.
5
Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow.
Mol Microbiol. 2006 Nov;62(3):811-22. doi: 10.1111/j.1365-2958.2006.05410.x. Epub 2006 Sep 21.
6
REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS.
J Bacteriol. 1961 May;81(5):741-6. doi: 10.1128/jb.81.5.741-746.1961.
7
The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria.
FEMS Microbiol Rev. 2005 Sep;29(4):765-94. doi: 10.1016/j.femsre.2004.11.002. Epub 2004 Nov 28.
9
Bacillus subtilis ilvB operon: an intersection of global regulons.
Mol Microbiol. 2005 Jun;56(6):1549-59. doi: 10.1111/j.1365-2958.2005.04634.x.
10
An alternative strategy for bacterial ribosome synthesis: Bacillus subtilis rRNA transcription regulation.
EMBO J. 2004 Nov 10;23(22):4473-83. doi: 10.1038/sj.emboj.7600423. Epub 2004 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验