Tentori Augusto M, Herr Amy E
UC Berkeley/UCSF Joint Graduate Group in Bioengineering.
J Micromech Microeng. 2011 May 1;21(5):54001. doi: 10.1088/0960-1317/21/5/054001.
Microfluidic technologies are playing an increasingly important role in biological inquiry. Sophisticated approaches to the microanalysis of biological specimens rely, in part, on the fine fluid and material control offered by microtechnology, as well as a sufficient capacity for systems integration. A suite of techniques that utilize photopatterning of polymers on fluidic surfaces, within fluidic volumes, and as primary device structures underpins recent technological innovation in bioanalysis. Well-characterized photopatterning approaches enable previously fabricated or commercially fabricated devices to be customized by the user in a straight-forward manner, making the tools accessible to laboratories that do not focus on microfabrication technology innovation. In this review of recent advances, we summarize reported microfluidic devices with photopatterned structures and regions as platforms for a diverse set of biological measurements and assays.
微流控技术在生物学研究中发挥着越来越重要的作用。对生物样本进行微观分析的复杂方法部分依赖于微技术所提供的精细流体和材料控制,以及足够的系统集成能力。一系列利用聚合物在流体表面、流体体积内以及作为主要器件结构进行光图案化的技术支撑了生物分析领域的最新技术创新。特征明确的光图案化方法使先前制造的或商业制造的设备能够由用户以直接的方式进行定制,从而使那些不专注于微制造技术创新的实验室也能够使用这些工具。在本次对近期进展的综述中,我们总结了报道的具有光图案化结构和区域的微流控设备,这些设备作为用于各种生物测量和分析的平台。