Department of Biology, Long Island University, Brooklyn, New York, United States of America.
PLoS One. 2011;6(8):e23215. doi: 10.1371/journal.pone.0023215. Epub 2011 Aug 10.
Computational determination of protein-ligand interaction potential is important for many biological applications including virtual screening for therapeutic drugs. The novel internal consensus scoring strategy is an empirical approach with an extended set of 9 binding terms combined with a neural network capable of analysis of diverse complexes. Like conventional consensus methods, internal consensus is capable of maintaining multiple distinct representations of protein-ligand interactions. In a typical use the method was trained using ligand classification data (binding/no binding) for a single receptor. The internal consensus analyses successfully distinguished protein-ligand complexes from decoys (r², 0.895 for a series of typical proteins). Results are superior to other tested empirical methods. In virtual screening experiments, internal consensus analyses provide consistent enrichment as determined by ROC-AUC and pROC metrics.
计算蛋白质-配体相互作用势对于许多生物应用非常重要,包括治疗药物的虚拟筛选。新型内部共识评分策略是一种经验方法,它结合了一套扩展的 9 个结合项和一个能够分析多种复合物的神经网络。与传统共识方法一样,内部共识能够维持蛋白质-配体相互作用的多种不同表示形式。在典型的应用中,该方法使用单个受体的配体分类数据(结合/不结合)进行训练。内部共识分析成功地区分了蛋白质-配体复合物和诱饵(一系列典型蛋白质的 r²为 0.895)。结果优于其他测试的经验方法。在虚拟筛选实验中,内部共识分析通过 ROC-AUC 和 pROC 指标提供一致的富集。