Suppr超能文献

高实用的铜(I)/TEMPO 催化剂体系用于伯醇的选择性有氧氧化。

Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols.

机构信息

Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, Wisconsin 53706, USA.

出版信息

J Am Chem Soc. 2011 Oct 26;133(42):16901-10. doi: 10.1021/ja206230h. Epub 2011 Oct 3.

Abstract

Aerobic oxidation reactions have been the focus of considerable attention, but their use in mainstream organic chemistry has been constrained by limitations in their synthetic scope and by practical factors, such as the use of pure O(2) as the oxidant or complex catalyst synthesis. Here, we report a new (bpy)Cu(I)/TEMPO catalyst system that enables efficient and selective aerobic oxidation of a broad range of primary alcohols, including allylic, benzylic, and aliphatic derivatives, to the corresponding aldehydes using readily available reagents, at room temperature with ambient air as the oxidant. The catalyst system is compatible with a wide range of functional groups and the high selectivity for 1° alcohols enables selective oxidation of diols that lack protecting groups.

摘要

有氧氧化反应一直受到广泛关注,但由于其合成范围的限制以及实际因素(如使用纯 O(2)作为氧化剂或复杂催化剂合成),它们在主流有机化学中的应用受到限制。在这里,我们报告了一种新的(bpy)Cu(I)/TEMPO 催化剂体系,该体系可使用易得的试剂,在室温下,以环境空气为氧化剂,高效且选择性地氧化广泛的伯醇,包括烯丙基、苄基和脂肪族衍生物,生成相应的醛。该催化剂体系与多种官能团兼容,并且对 1°醇的高选择性使得无需保护基团的二醇的选择性氧化成为可能。

相似文献

1
Highly practical copper(I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols.
J Am Chem Soc. 2011 Oct 26;133(42):16901-10. doi: 10.1021/ja206230h. Epub 2011 Oct 3.
2
Copper(I)/ABNO-catalyzed aerobic alcohol oxidation: alleviating steric and electronic constraints of Cu/TEMPO catalyst systems.
J Am Chem Soc. 2013 Oct 23;135(42):15742-5. doi: 10.1021/ja409241h. Epub 2013 Oct 15.
3
Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation.
J Am Chem Soc. 2013 Feb 13;135(6):2357-67. doi: 10.1021/ja3117203. Epub 2013 Jan 31.
4
Copper(I)/TEMPO-catalyzed aerobic oxidation of primary alcohols to aldehydes with ambient air.
Nat Protoc. 2012 May 24;7(6):1161-6. doi: 10.1038/nprot.2012.057.
5
Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems.
Angew Chem Int Ed Engl. 2014 Aug 18;53(34):8824-38. doi: 10.1002/anie.201403110. Epub 2014 Jul 7.
6
DNA-Compatible Copper/TEMPO Oxidation for DNA-Encoded Libraries.
Bioconjug Chem. 2023 Aug 16;34(8):1380-1386. doi: 10.1021/acs.bioconjchem.3c00254. Epub 2023 Aug 4.
7
Cu-NHC-TEMPO catalyzed aerobic oxidation of primary alcohols to aldehydes.
J Org Chem. 2013 Sep 6;78(17):8531-6. doi: 10.1021/jo401252d. Epub 2013 Aug 27.
8
A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.
Angew Chem Int Ed Engl. 2015 Mar 27;54(14):4208-11. doi: 10.1002/anie.201411483. Epub 2015 Feb 10.
9
Stable TEMPO and ABNO Catalyst Solutions for User-Friendly (bpy)Cu/Nitroxyl-Catalyzed Aerobic Alcohol Oxidation.
J Org Chem. 2015 Nov 6;80(21):11184-8. doi: 10.1021/acs.joc.5b01950. Epub 2015 Oct 27.

引用本文的文献

2
Electrochromic, Capacitive, and Electrocatalytic Performance of TEMPO Anchored EDOT-SN(T)S-EDOT Electrode.
ACS Omega. 2025 Jul 3;10(27):29442-29451. doi: 10.1021/acsomega.5c02762. eCollection 2025 Jul 15.
3
Nitrogen-Centered Organic Persistent Radicals Catalyze Redox-Neutral C─C Bond Forming Reactions.
Angew Chem Int Ed Engl. 2025 Aug 11;64(33):e202511233. doi: 10.1002/anie.202511233. Epub 2025 Jun 24.
4
Tuning Reactivity in Cu/TEMPO Catalyzed Alcohol Oxidation Reactions.
Chem Asian J. 2025 Jun;20(11):e202500123. doi: 10.1002/asia.202500123. Epub 2025 Apr 30.
5
Redox-Active Ligands Permit Multielectron O Homolysis and O-Atom Transfer at Exceptionally High-Valent Vanadyl Complexes.
J Am Chem Soc. 2025 Apr 23;147(16):13356-13369. doi: 10.1021/jacs.4c18305. Epub 2025 Apr 8.
6
Ligand Influence on the Performance of Cesium Lead Bromide Perovskite Quantum Dots in Photocatalytic C(sp)-H Bromination Reactions.
J Am Chem Soc. 2025 Mar 12;147(10):8548-8558. doi: 10.1021/jacs.4c17013. Epub 2025 Feb 28.
7
Dioxazolones as electrophilic amide sources in copper-catalyzed and -mediated transformations.
Beilstein J Org Chem. 2025 Jan 22;21:200-216. doi: 10.3762/bjoc.21.12. eCollection 2025.
8
10
An automatic end-to-end chemical synthesis development platform powered by large language models.
Nat Commun. 2024 Nov 23;15(1):10160. doi: 10.1038/s41467-024-54457-x.

本文引用的文献

1
From Structural Models of Galactose Oxidase to Homogeneous Catalysis: Efficient Aerobic Oxidation of Alcohols.
Angew Chem Int Ed Engl. 1998 Sep 4;37(16):2217-2220. doi: 10.1002/(SICI)1521-3773(19980904)37:16<2217::AID-ANIE2217>3.0.CO;2-D.
2
Highly efficient, organocatalytic aerobic alcohol oxidation.
J Am Chem Soc. 2011 May 4;133(17):6497-500. doi: 10.1021/ja110940c. Epub 2011 Apr 7.
3
Mild and selective vanadium-catalyzed oxidation of benzylic, allylic, and propargylic alcohols using air.
Org Lett. 2011 Apr 15;13(8):1908-11. doi: 10.1021/ol103107v. Epub 2011 Mar 24.
4
Selective catalytic oxidation of glycerol to dihydroxyacetone.
Angew Chem Int Ed Engl. 2010 Dec 3;49(49):9456-9. doi: 10.1002/anie.201004063.
5
Anionic N,O-ligated Pd(II) complexes: highly active catalysts for alcohol oxidation.
Chem Commun (Camb). 2010 Oct 14;46(38):7238-40. doi: 10.1039/c0cc01138j. Epub 2010 Aug 27.
8
Catalytic activity dependency on catalyst components in aerobic copper-TEMPO oxidation.
Chemistry. 2009 Oct 19;15(41):10901-11. doi: 10.1002/chem.200901245.
9
Recent advancements and challenges of palladium(II)-catalyzed oxidation reactions with molecular oxygen as the sole oxidant.
Chem Commun (Camb). 2009 Jul 14(26):3854-67. doi: 10.1039/b902868d. Epub 2009 May 14.
10
Hypervalent iodine-mediated oxidation of alcohols.
Chem Commun (Camb). 2009 Apr 28(16):2086-99. doi: 10.1039/b823399c. Epub 2009 Mar 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验