Suppr超能文献

扩散影响的配体在生物大分子和跨膜通道中的埋藏部位的结合。

Diffusion-influenced ligand binding to buried sites in macromolecules and transmembrane channels.

机构信息

Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

J Chem Phys. 2011 Aug 21;135(7):075103. doi: 10.1063/1.3609973.

Abstract

We consider diffusion-influenced binding to a buried binding site that is connected to the surface by a narrow tunnel. Under the single assumption of an equilibrium distribution of ligands over the tunnel cross section, we reduce the calculation of the time-dependent rate coefficient to the solution of a one-dimensional diffusion equation with appropriate boundary conditions. We obtain a simple analytical expression for the steady-state rate that depends on the potential of mean force in the tunnel and the diffusion-controlled rate of binding to the tunnel entrance. Potential applications of our theory include substrate binding to a buried active site of an enzyme and permeant ion binding to an internal site in a transmembrane channel.

摘要

我们考虑扩散影响下的配体与埋藏结合位点的结合,该结合位点通过一个狭窄的隧道与表面相连。在仅假设配体在隧道横截面上的平衡分布的单一假设下,我们将时间相关的速率系数的计算简化为具有适当边界条件的一维扩散方程的解。我们得到了一个简单的稳态速率的解析表达式,该表达式取决于隧道中的平均势和扩散控制的隧道入口结合速率。我们理论的潜在应用包括底物与酶的埋藏活性位点的结合以及渗透离子与跨膜通道内部位点的结合。

相似文献

4
Correcting binding parameters for interacting ligand-lattice systems.修正相互作用配体晶格体系的结合参数。
Phys Rev E. 2017 Jul;96(1-1):012417. doi: 10.1103/PhysRevE.96.012417. Epub 2017 Jul 31.
10
Ligand binding with continuous modification of binding sites.配体结合并对结合位点进行持续修饰。
J Biomol Struct Dyn. 2004 Oct;22(2):245-52. doi: 10.1080/07391102.2004.10506999.

引用本文的文献

10
Theory of Diffusion-Influenced Reaction Networks.扩散影响反应网络理论。
J Phys Chem B. 2018 Dec 13;122(49):11338-11354. doi: 10.1021/acs.jpcb.8b07250. Epub 2018 Oct 4.

本文引用的文献

5
The gates of ion channels and enzymes.离子通道和酶的闸门。
Trends Biochem Sci. 2010 Mar;35(3):179-85. doi: 10.1016/j.tibs.2009.10.007. Epub 2009 Nov 18.
10
Kinetic equations for diffusion in the presence of entropic barriers.存在熵垒时扩散的动力学方程。
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 1):061106. doi: 10.1103/PhysRevE.64.061106. Epub 2001 Nov 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验