Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Chem Phys. 2011 Aug 21;135(7):075103. doi: 10.1063/1.3609973.
We consider diffusion-influenced binding to a buried binding site that is connected to the surface by a narrow tunnel. Under the single assumption of an equilibrium distribution of ligands over the tunnel cross section, we reduce the calculation of the time-dependent rate coefficient to the solution of a one-dimensional diffusion equation with appropriate boundary conditions. We obtain a simple analytical expression for the steady-state rate that depends on the potential of mean force in the tunnel and the diffusion-controlled rate of binding to the tunnel entrance. Potential applications of our theory include substrate binding to a buried active site of an enzyme and permeant ion binding to an internal site in a transmembrane channel.
我们考虑扩散影响下的配体与埋藏结合位点的结合,该结合位点通过一个狭窄的隧道与表面相连。在仅假设配体在隧道横截面上的平衡分布的单一假设下,我们将时间相关的速率系数的计算简化为具有适当边界条件的一维扩散方程的解。我们得到了一个简单的稳态速率的解析表达式,该表达式取决于隧道中的平均势和扩散控制的隧道入口结合速率。我们理论的潜在应用包括底物与酶的埋藏活性位点的结合以及渗透离子与跨膜通道内部位点的结合。