Schwartz Jean-Marc, Gaugain Claire
Faculty of Life Sciences, University of Manchester, Manchester, UK.
Methods Mol Biol. 2011;759:427-43. doi: 10.1007/978-1-61779-173-4_24.
Building a dynamic model of a complete biological cell is one of the great challenges of the 21st century. While this objective could appear unrealistic until recently, considerable improvements in high-throughput data collection techniques, computational performance, data integration, and modeling approaches now allow us to consider it within reach in the near future. In this chapter, we review recent developments that pave the way toward the construction of genome-scale dynamic models. We first describe methodologies for the integration of heterogeneous "omics" datasets, which enable the interpretation of cellular activity at the genome scale and in fluctuating conditions, providing the necessary input to models. We subsequently discuss principles of such models and describe a series of approaches that open perspectives toward the construction of genome-scale dynamic models.
构建完整生物细胞的动态模型是21世纪的重大挑战之一。虽然直到最近这个目标似乎还不现实,但高通量数据收集技术、计算性能、数据整合和建模方法的显著改进,现在使我们能够认为在不久的将来可以实现这一目标。在本章中,我们回顾了为构建基因组规模动态模型铺平道路的最新进展。我们首先描述整合异质“组学”数据集的方法,这些方法能够在基因组规模和波动条件下解释细胞活动,为模型提供必要的输入。随后,我们讨论此类模型的原理,并描述一系列为构建基因组规模动态模型开辟前景的方法。