The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37922, United States.
Nano Lett. 2011 Oct 12;11(10):4161-7. doi: 10.1021/nl202039v. Epub 2011 Sep 1.
A scanning probe microscopy approach for mapping local irreversible electrochemical processes based on detection of bias-induced frequency shifts of cantilevers in contact with the electrochemically active surface is demonstrated. Using Li ion conductive glass ceramic as a model, we demonstrate near unity transference numbers for ionic transport and establish detection limits for current-based and strain-based detection. The tip-induced electrochemical process is shown to be a first-order transformation and nucleation potential is close to the Li-metal reduction potential. Spatial variability of the nucleation bias is explored and linked to the local phase composition. These studies both provide insight into nanoscale ionic phenomena in practical Li-ion electrolyte and also open pathways for probing irreversible electrochemical, bias-induced, and thermal transformations in nanoscale systems.
本文展示了一种基于扫描探针显微镜的方法,通过检测与电化学活性表面接触的悬臂在偏压下的频率偏移,来绘制局部不可逆电化学过程的图谱。使用锂离子导电玻璃陶瓷作为模型,我们证明了离子输运的近乎单位转移数,并建立了电流和应变检测的检测限。结果表明,针尖诱导的电化学过程是一级相变,成核势接近锂金属还原势。还探索了成核偏压的空间变异性,并将其与局部相组成联系起来。这些研究不仅深入了解了实际锂离子电解质中的纳米尺度离子现象,而且为纳米尺度系统中不可逆电化学、偏压诱导和热转变的探测开辟了新途径。