Suppr超能文献

纳米尺度下固态锂离子电解质不可逆电化学成核过程的测绘。

Nanometer-scale mapping of irreversible electrochemical nucleation processes on solid Li-ion electrolytes.

机构信息

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

Sci Rep. 2013;3:1621. doi: 10.1038/srep01621.

Abstract

Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.

摘要

与结构、连接或组成变化相关的电化学过程通常通过新相成核以及随后的核生长来进行。理解和控制反应需要阐明和控制成核机制。然而,控制成核动力学的因素,包括局部力学条件、微观结构和局部离子分布之间的相互作用,仍然难以捉摸。此外,电流探测技术干扰原始微观结构的趋势使得无法系统地评估微观结构与局部电化学活性之间的相关性。在这项工作中,使用约 30nm 的分辨率研究了锂离子导电玻璃陶瓷表面上 Li 的不可逆成核过程的空间变异性。在结晶 AlPO4 相与非晶基质之间的边界处观察到成核速率增加,并归因于 Li 偏析。这项研究为在单个结构缺陷水平上探测机制以及阐明纳米体积内的电化学活性开辟了道路。

相似文献

2
Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in li ion conductive glass ceramics.
Nano Lett. 2011 Oct 12;11(10):4161-7. doi: 10.1021/nl202039v. Epub 2011 Sep 1.
3
Nonlinear phase-field model for electrode-electrolyte interface evolution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 1):051609. doi: 10.1103/PhysRevE.86.051609. Epub 2012 Nov 26.
4
High-Throughput Combinatorial Analysis of the Spatiotemporal Dynamics of Nanoscale Lithium Metal Plating.
ACS Nano. 2024 Aug 27;18(34):23032-23046. doi: 10.1021/acsnano.4c05001. Epub 2024 Aug 13.
7
Dendrite-free lithium deposition with self-aligned nanorod structure.
Nano Lett. 2014 Dec 10;14(12):6889-96. doi: 10.1021/nl5039117. Epub 2014 Dec 1.
10
Nanoscale Characterization of Ion Mobility by Temperature-Controlled Li-Nanoparticle Growth.
ACS Appl Mater Interfaces. 2019 Feb 6;11(5):5476-5483. doi: 10.1021/acsami.8b16281. Epub 2019 Jan 22.

引用本文的文献

1
Air-Stable Lithiation of MoS for Direct-Bandgap Multilayers.
Small Sci. 2025 Jun 23;5(9):2500186. doi: 10.1002/smsc.202500186. eCollection 2025 Sep.
2
Controlling Li Dendritic Growth in Graphite Anodes by Potassium Electrolyte Additives for Li-Ion Batteries.
ACS Appl Mater Interfaces. 2022 Sep 21;14(37):42078-42092. doi: 10.1021/acsami.2c11175. Epub 2022 Sep 12.
8
Solid-state electrochemistry on the nanometer and atomic scales: the scanning probe microscopy approach.
Nanoscale. 2016 Aug 7;8(29):13838-58. doi: 10.1039/c6nr01524g. Epub 2016 May 5.

本文引用的文献

1
The partially reversible formation of Li-metal particles on a solid Li electrolyte: applications toward nanobatteries.
Nanotechnology. 2012 Aug 17;23(32):325402. doi: 10.1088/0957-4484/23/32/325402. Epub 2012 Jul 23.
3
A single-atom transistor.
Nat Nanotechnol. 2012 Feb 19;7(4):242-6. doi: 10.1038/nnano.2012.21.
4
Mapping irreversible electrochemical processes on the nanoscale: ionic phenomena in li ion conductive glass ceramics.
Nano Lett. 2011 Oct 12;11(10):4161-7. doi: 10.1021/nl202039v. Epub 2011 Sep 1.
5
Measuring oxygen reduction/evolution reactions on the nanoscale.
Nat Chem. 2011 Aug 14;3(9):707-13. doi: 10.1038/nchem.1112.
6
Nanoscale mapping of ion diffusion in a lithium-ion battery cathode.
Nat Nanotechnol. 2010 Oct;5(10):749-54. doi: 10.1038/nnano.2010.174. Epub 2010 Aug 29.
7
The mechanism of electroforming of metal oxide memristive switches.
Nanotechnology. 2009 May 27;20(21):215201. doi: 10.1088/0957-4484/20/21/215201. Epub 2009 May 5.
8
Nanoscale control of an interfacial metal-insulator transition at room temperature.
Nat Mater. 2008 Apr;7(4):298-302. doi: 10.1038/nmat2136. Epub 2008 Mar 2.
9
Nano-chemistry and scanning probe nanolithographies.
Chem Soc Rev. 2006 Jan;35(1):29-38. doi: 10.1039/b501599p. Epub 2005 Nov 21.
10
Materials science. Playing nature's game with artificial muscles.
Science. 2005 Apr 1;308(5718):63-5. doi: 10.1126/science.1099010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验