Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Sci Rep. 2013;3:1621. doi: 10.1038/srep01621.
Electrochemical processes associated with changes in structure, connectivity or composition typically proceed via new phase nucleation with subsequent growth of nuclei. Understanding and controlling reactions requires the elucidation and control of nucleation mechanisms. However, factors controlling nucleation kinetics, including the interplay between local mechanical conditions, microstructure and local ionic profile remain inaccessible. Furthermore, the tendency of current probing techniques to interfere with the original microstructure prevents a systematic evaluation of the correlation between the microstructure and local electrochemical reactivity. In this work, the spatial variability of irreversible nucleation processes of Li on a Li-ion conductive glass-ceramics surface is studied with ~30 nm resolution. An increased nucleation rate at the boundaries between the crystalline AlPO4 phase and amorphous matrix is observed and attributed to Li segregation. This study opens a pathway for probing mechanisms at the level of single structural defects and elucidation of electrochemical activities in nanoscale volumes.
与结构、连接或组成变化相关的电化学过程通常通过新相成核以及随后的核生长来进行。理解和控制反应需要阐明和控制成核机制。然而,控制成核动力学的因素,包括局部力学条件、微观结构和局部离子分布之间的相互作用,仍然难以捉摸。此外,电流探测技术干扰原始微观结构的趋势使得无法系统地评估微观结构与局部电化学活性之间的相关性。在这项工作中,使用约 30nm 的分辨率研究了锂离子导电玻璃陶瓷表面上 Li 的不可逆成核过程的空间变异性。在结晶 AlPO4 相与非晶基质之间的边界处观察到成核速率增加,并归因于 Li 偏析。这项研究为在单个结构缺陷水平上探测机制以及阐明纳米体积内的电化学活性开辟了道路。