Department of Physics, City College of New York, New York, New York 10031, USA.
J Am Chem Soc. 2011 Nov 2;133(43):17375-85. doi: 10.1021/ja205811f. Epub 2011 Oct 11.
Reaction centers (RCs) are integral membrane proteins that undergo a series of electron transfer reactions during the process of photosynthesis. In the Q(A) site of RCs from Rhodobacter sphaeroides, ubiquinone-10 is reduced, by a single electron transfer, to its semiquinone. The neutral quinone and anionic semiquinone have similar affinities, which is required for correct in situ reaction thermodynamics. A previous study showed that despite similar affinities, anionic quinones associate and dissociate from the Q(A) site at rates ≈10(4) times slower than neutral quinones indicating that anionic quinones encounter larger binding barriers (Madeo, J.; Gunner, M. R. Modeling binding kinetics at the Q(A) site in bacterial reaction centers. Biochemistry 2005, 44, 10994-11004). The present study investigates these barriers computationally, using steered molecular dynamics (SMD) to model the unbinding of neutral ground state ubiquinone (UQ) and its reduced anionic semiquinone (SQ(-)) from the Q(A) site. In agreement with experiment, the SMD unbinding barrier for SQ(-) is larger than for UQ. Multi Conformational Continuum Electrostatics (MCCE), used here to calculate the binding energy, shows that SQ(-) and UQ have comparable affinities. In the Q(A) site, there are stronger binding interactions for SQ(-) compared to UQ, especially electrostatic attraction to a bound non-heme Fe(2+). These interactions compensate for the higher SQ(-) desolvation penalty, allowing both redox states to have similar affinities. These additional interactions also increase the dissociation barrier for SQ(-) relative to UQ. Thus, the slower SQ(-) dissociation rate is a direct physical consequence of the additional binding interactions required to achieve a Q(A) site affinity similar to that of UQ. By a similar mechanism, the slower association rate is caused by stronger interactions between SQ(-) and the polar solvent. Thus, stronger interactions for both the unbound and bound states of charged and highly polar ligands can slow their binding kinetics without a conformational gate. Implications of this for other systems are discussed.
反应中心(RCs)是整合膜蛋白,在光合作用过程中经历一系列电子转移反应。在 Rhodobacter sphaeroides 的 RC 的 Q(A) 位点,泛醌-10 通过单次电子转移被还原为半醌。中性醌和阴离子半醌具有相似的亲和力,这是正确的原位反应热力学所必需的。先前的研究表明,尽管亲和力相似,但阴离子醌与 Q(A) 位点的结合和解离速率比中性醌慢约 10(4)倍,表明阴离子醌遇到更大的结合障碍(Madeo,J.;Gunner,M.R.在细菌反应中心的 Q(A) 位点模拟结合动力学。生物化学 2005, 44, 10994-11004)。本研究使用定向分子动力学(SMD)来模拟中性基态泛醌(UQ)及其还原阴离子半醌(SQ(-))从 Q(A) 位点的非结合,从计算上研究了这些障碍。与实验一致,SQ(-)的 SMD 非结合势垒大于 UQ。多构象连续静电(MCCE),这里用于计算结合能,表明 SQ(-)和 UQ 具有相似的亲和力。在 Q(A) 位点,SQ(-)与 UQ 相比具有更强的结合相互作用,尤其是与结合的非血红素 Fe(2+)的静电吸引力。这些相互作用补偿了 SQ(-)更高的去溶剂化罚分,使两种氧化还原状态具有相似的亲和力。这些额外的相互作用也增加了 SQ(-)相对于 UQ 的解离势垒。因此,SQ(-)的较慢解离速率是实现与 UQ 相似的 Q(A) 位点亲和力所需的额外结合相互作用的直接物理后果。通过类似的机制,较慢的结合速率是由于 SQ(-)与极性溶剂之间更强的相互作用造成的。因此,带电荷和高极性配体的未结合和结合状态的更强相互作用可以减缓它们的结合动力学,而无需构象门。讨论了这对其他系统的影响。