Department Chemie, Technische Universität München, D-85748 Garching, Germany.
Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.
Proc Natl Acad Sci U S A. 2018 Sep 4;115(36):E8413-E8420. doi: 10.1073/pnas.1805468115. Epub 2018 Aug 17.
Complex I couples the free energy released from quinone (Q) reduction to pump protons across the biological membrane in the respiratory chains of mitochondria and many bacteria. The Q reduction site is separated by a large distance from the proton-pumping membrane domain. To address the molecular mechanism of this long-range proton-electron coupling, we perform here full atomistic molecular dynamics simulations, free energy calculations, and continuum electrostatics calculations on complex I from We show that the dynamics of Q is redox-state-dependent, and that quinol, QH, moves out of its reduction site and into a site in the Q tunnel that is occupied by a Q analog in a crystal structure of We also identify a second Q-binding site near the opening of the Q tunnel in the membrane domain, where the Q headgroup forms strong interactions with a cluster of aromatic and charged residues, while the Q tail resides in the lipid membrane. We estimate the effective diffusion coefficient of Q in the tunnel, and in turn the characteristic time for Q to reach the active site and for QH to escape to the membrane. Our simulations show that Q moves along the Q tunnel in a redox-state-dependent manner, with distinct binding sites formed by conserved residue clusters. The motion of Q to these binding sites is proposed to be coupled to the proton-pumping machinery in complex I.
复合体 I 将来自醌 (Q) 还原的自由能与质子泵结合,在线粒体和许多细菌的呼吸链中跨生物膜。Q 还原部位与质子泵膜域之间存在很大的距离。为了解决这种远程质子电子耦合的分子机制,我们在这里对来自 复合体 I 进行了全原子分子动力学模拟、自由能计算和连续静电计算。我们表明,Q 的动力学与氧化还原状态有关,并且在晶体结构中,QH 会从其还原部位移动到 Q 隧道中的一个位置,该位置被 Q 类似物占据。我们还在膜域的 Q 隧道开口附近确定了第二个 Q 结合位点,在那里 Q 头基与芳香族和带电残基簇形成强相互作用,而 Q 尾部位于脂质膜中。我们估计了 Q 在隧道中的有效扩散系数,进而估计了 Q 到达活性部位和 QH 逃逸到膜的特征时间。我们的模拟表明,Q 以依赖于氧化还原状态的方式沿着 Q 隧道移动,形成由保守残基簇组成的独特结合位点。Q 向这些结合位点的运动被提出与复合体 I 中的质子泵机制相耦合。