Suppr超能文献

胶质母细胞瘤患者的肿瘤和血清 MGMT 启动子甲基化和蛋白表达。

Tumour and serum MGMT promoter methylation and protein expression in glioblastoma patients.

机构信息

Medical Oncology Service, Catalan Institute of Oncology (ICO), Hospital Germans Trias i Pujol, Carretera Canyet s/n, Badalona, Barcelona, Spain.

出版信息

Clin Transl Oncol. 2011 Sep;13(9):677-85. doi: 10.1007/s12094-011-0714-x.

Abstract

INTRODUCTION

Methylation of the promoter of the MGMT gene and MGMT protein expression are recognized as predictive markers for response to alkylating chemotherapy in glioblastoma (GB).

MATERIAL AND METHODS

We have assessed MGMT methylation with the methylation-specific polymerase chain reaction (MSP) in tumor samples from 70 GB patients and in serum samples from 37 of these patients. We have also assessed MGMT protein expression by immunohistochemical (IHC) analysis in tissue samples from 63 of these patients.

RESULTS

We found concordance between MGMT methylation status in tissue and serum (Cohen's Kappa = 0.586; p<0.0001). MSP for detection of non-methylated MGMT promoter in serum showed a sensitivity of 95.4% and a specificity of 60%, while the IHC methylation test showed a low specificity (8.9%). Patients whose MGMT promoter was methylated in tissue attained longer progression-free and overall survival. In the multivariate analysis, serum MGMT promoter methylation emerged as an independent factor for longer progression-free and overall survival.

CONCLUSION

Serum-based MGMT methylation analysis offers a promising alternative to tumor-based MGMT analysis in cases where tissue samples are unavailable.

摘要

简介

MGMT 基因启动子的甲基化和 MGMT 蛋白表达被认为是胶质母细胞瘤(GB)对烷化化疗反应的预测标志物。

材料和方法

我们使用甲基化特异性聚合酶链反应(MSP)评估了 70 名 GB 患者的肿瘤样本和其中 37 名患者的血清样本中的 MGMT 甲基化情况。我们还通过免疫组织化学(IHC)分析评估了这些患者中 63 名患者的组织样本中的 MGMT 蛋白表达。

结果

我们发现组织和血清中的 MGMT 甲基化状态具有一致性(Cohen's Kappa = 0.586;p<0.0001)。用于检测血清中非甲基化 MGMT 启动子的 MSP 显示出 95.4%的敏感性和 60%的特异性,而 IHC 甲基化测试特异性较低(8.9%)。组织中 MGMT 启动子甲基化的患者获得了更长的无进展生存期和总生存期。在多变量分析中,血清 MGMT 启动子甲基化是无进展生存期和总生存期延长的独立因素。

结论

在无法获得组织样本的情况下,基于血清的 MGMT 甲基化分析为基于肿瘤的 MGMT 分析提供了一种很有前途的替代方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验