Goetschy A, Skipetrov S E
Université Grenoble 1/CNRS, LPMMC UMR 5493, Maison des Magistères, F-38042 Grenoble, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011150. doi: 10.1103/PhysRevE.84.011150. Epub 2011 Jul 29.
We develop a theory for the eigenvalue density of arbitrary non-Hermitian Euclidean matrices. Closed equations for the resolvent and the eigenvector correlator are derived. The theory is applied to the random Green's matrix relevant to wave propagation in an ensemble of pointlike scattering centers. This opens a new perspective in the study of wave diffusion, Anderson localization, and random lasing.
我们为任意非厄米特欧几里得矩阵的特征值密度建立了一种理论。推导了预解式和特征向量关联函数的封闭方程。该理论应用于与点状散射中心集合中的波传播相关的随机格林矩阵。这为波扩散、安德森局域化和随机激光的研究开辟了一个新的视角。