Suppr超能文献

动力系统的最优重构:一种噪声放大方法。

Optimal reconstruction of dynamical systems: a noise amplification approach.

作者信息

Uzal L C, Grinblat G L, Verdes P F

机构信息

CIFASIS-French Argentine International Center for Information and Systems Sciences, UPCAM (France)/UNR-CONICET (Argentina), Rosario, Argentina.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 2):016223. doi: 10.1103/PhysRevE.84.016223. Epub 2011 Jul 25.

Abstract

In this work we propose an objective function to guide the search for a state space reconstruction of a dynamical system from a time series of measurements. These statistics can be evaluated on any reconstructed attractor, thereby allowing a direct comparison among different approaches: (uniform or nonuniform) delay vectors, PCA, Legendre coordinates, etc. It can also be used to select the most appropriate parameters of a reconstruction strategy. In the case of delay coordinates this translates into finding the optimal delay time and embedding dimension from the absolute minimum of the advocated cost function. Its definition is based on theoretical arguments on noise amplification, the complexity of the reconstructed attractor, and a direct measure of local stretch which constitutes an irrelevance measure. The proposed method is demonstrated on synthetic and experimental time series.

摘要

在这项工作中,我们提出了一个目标函数,用于指导从测量时间序列中寻找动力系统状态空间重构的搜索过程。这些统计量可以在任何重构吸引子上进行评估,从而能够在不同方法(均匀或非均匀延迟向量、主成分分析、勒让德坐标等)之间进行直接比较。它还可用于选择重构策略的最合适参数。对于延迟坐标的情况,这意味着从所倡导的代价函数的绝对最小值中找到最佳延迟时间和嵌入维数。其定义基于关于噪声放大、重构吸引子的复杂性以及构成不相关度量的局部拉伸的直接度量的理论论据。所提出的方法在合成时间序列和实验时间序列上得到了验证。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验