Suppr超能文献

传染病状态空间重建因果推断的局限性

Limits to Causal Inference with State-Space Reconstruction for Infectious Disease.

作者信息

Cobey Sarah, Baskerville Edward B

机构信息

Ecology & Evolution, University of Chicago, Chicago, IL, United States of America.

出版信息

PLoS One. 2016 Dec 28;11(12):e0169050. doi: 10.1371/journal.pone.0169050. eCollection 2016.

Abstract

Infectious diseases are notorious for their complex dynamics, which make it difficult to fit models to test hypotheses. Methods based on state-space reconstruction have been proposed to infer causal interactions in noisy, nonlinear dynamical systems. These "model-free" methods are collectively known as convergent cross-mapping (CCM). Although CCM has theoretical support, natural systems routinely violate its assumptions. To identify the practical limits of causal inference under CCM, we simulated the dynamics of two pathogen strains with varying interaction strengths. The original method of CCM is extremely sensitive to periodic fluctuations, inferring interactions between independent strains that oscillate with similar frequencies. This sensitivity vanishes with alternative criteria for inferring causality. However, CCM remains sensitive to high levels of process noise and changes to the deterministic attractor. This sensitivity is problematic because it remains challenging to gauge noise and dynamical changes in natural systems, including the quality of reconstructed attractors that underlie cross-mapping. We illustrate these challenges by analyzing time series of reportable childhood infections in New York City and Chicago during the pre-vaccine era. We comment on the statistical and conceptual challenges that currently limit the use of state-space reconstruction in causal inference.

摘要

传染病因其复杂的动态变化而声名狼藉,这使得建立合适的模型来检验假设变得困难。基于状态空间重构的方法已被提出,用于推断噪声非线性动态系统中的因果相互作用。这些“无模型”方法统称为收敛交叉映射(CCM)。尽管CCM有理论支持,但自然系统常常违反其假设。为了确定CCM下因果推断的实际局限性,我们模拟了具有不同相互作用强度的两种病原体菌株的动态变化。CCM的原始方法对周期性波动极其敏感,会推断出频率相似的独立菌株之间的相互作用。采用推断因果关系的替代标准时,这种敏感性就会消失。然而,CCM对高水平的过程噪声和确定性吸引子的变化仍然敏感。这种敏感性存在问题,因为在自然系统中测量噪声和动态变化仍然具有挑战性,包括交叉映射所基于的重构吸引子的质量。我们通过分析疫苗接种前时代纽约市和芝加哥可报告儿童感染的时间序列来说明这些挑战。我们对目前限制状态空间重构在因果推断中应用的统计和概念挑战进行了评论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/51cc/5193453/d4a34a746396/pone.0169050.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验