Matilla-García Mariano, Morales Isidro, Rodríguez Jose Miguel, Ruiz Marín Manuel
Facultad de Economicas y Empresariales, Universidad Nacional de Educación a Distancia (UNED), 28050 Madrid, Spain.
Telefónica, 28040 Madrid, Spain.
Entropy (Basel). 2021 Feb 11;23(2):221. doi: 10.3390/e23020221.
The modeling and prediction of chaotic time series require proper reconstruction of the state space from the available data in order to successfully estimate invariant properties of the embedded attractor. Thus, one must choose appropriate time delay τ∗ and embedding dimension for phase space reconstruction. The value of τ∗ can be estimated from the Mutual Information, but this method is rather cumbersome computationally. Additionally, some researchers have recommended that τ∗ should be chosen to be dependent on the embedding dimension by means of an appropriate value for the time delay τw=(p-1)τ∗, which is the optimal time delay for independence of the time series. The C-C method, based on Correlation Integral, is a method simpler than Mutual Information and has been proposed to select optimally τw and τ∗. In this paper, we suggest a simple method for estimating τ∗ and τw based on symbolic analysis and symbolic entropy. As in the C-C method, τ∗ is estimated as the first local optimal time delay and τw as the time delay for independence of the time series. The method is applied to several chaotic time series that are the base of comparison for several techniques. The numerical simulations for these systems verify that the proposed symbolic-based method is useful for practitioners and, according to the studied models, has a better performance than the C-C method for the choice of the time delay and embedding dimension. In addition, the method is applied to EEG data in order to study and compare some dynamic characteristics of brain activity under epileptic episodes.
混沌时间序列的建模与预测需要根据可用数据对状态空间进行适当重构,以便成功估计嵌入吸引子的不变特性。因此,必须为相空间重构选择合适的时间延迟τ∗和嵌入维数。τ∗的值可以通过互信息来估计,但这种方法在计算上相当繁琐。此外,一些研究人员建议,应通过时间延迟τw=(p - 1)τ∗的适当值来选择τ∗,使其依赖于嵌入维数,τw是时间序列独立性的最优时间延迟。基于关联积分的C - C方法是一种比互信息更简单的方法,已被提出用于最优地选择τw和τ∗。在本文中,我们提出一种基于符号分析和符号熵估计τ∗和τw的简单方法。与C - C方法一样,τ∗被估计为第一个局部最优时间延迟,τw被估计为时间序列独立性的时间延迟。该方法应用于几个混沌时间序列,这些序列是多种技术比较的基础。对这些系统的数值模拟验证了所提出的基于符号的方法对从业者是有用的,并且根据所研究的模型,在时间延迟和嵌入维数的选择上比C - C方法具有更好的性能。此外,该方法应用于脑电图(EEG)数据,以研究和比较癫痫发作时大脑活动的一些动态特征。