The John B. Pierce Laboratory, New Haven, CT, USA.
J Appl Physiol (1985). 2011 Dec;111(6):1703-9. doi: 10.1152/japplphysiol.00780.2011. Epub 2011 Aug 25.
Although dose-response curves are commonly used to describe in vivo cutaneous α-adrenergic responses, modeling parameters and analyses methods are not consistent across studies. The goal of the present investigation was to compare three analysis methods for in vivo cutaneous vasoconstriction studies using one reference data set. Eight women (22 ± 1 yr, 24 ± 1 kg/m(2)) were instrumented with three cutaneous microdialysis probes for progressive norepinephrine (NE) infusions (1 × 10(-8), 1 × 10(-6), 1 × 10(-5), 1 × 10(-4), and 1 × 10(-3) logM). NE was infused alone, co-infused with NG-monomethyl-l-arginine (l-NMMA, 10 mM) or Ketorolac tromethamine (KETO, 10 mM). For each probe, dose-response curves were generated using three commonly reported analyses methods: 1) nonlinear modeling without data manipulation, 2) nonlinear modeling with data normalization and constraints, and 3) percent change from baseline without modeling. Not all data conformed to sigmoidal dose-response curves using analysis 1, whereas all subjects' curves were modeled using analysis 2. When analyzing only curves that fit the sigmoidal model, NE + KETO induced a leftward shift in ED(50) compared with NE alone with analyses 1 and 2 (F test, P < 0.05) but only tended to shift the response leftward with analysis 3 (repeated-measures ANOVA, P = 0.08). Neither maximal vasoconstrictor capacity (E(max)) in analysis 1 nor %change CVC change from baseline in analysis 3 were altered by blocking agents. In conclusion, although the overall detection of curve shifts and interpretation was similar between the two modeling methods of curve fitting, analysis 2 produced more sigmoidal curves.
尽管剂量-反应曲线常用于描述体内皮肤α-肾上腺素能反应,但研究之间的建模参数和分析方法并不一致。本研究的目的是使用一个参考数据集比较三种体内皮肤血管收缩研究的分析方法。八名女性(22 ± 1 岁,24 ± 1 kg/m2)接受了三个皮肤微透析探针的渐进性去甲肾上腺素(NE)输注(1 × 10-8、1 × 10-6、1 × 10-5、1 × 10-4 和 1 × 10-3 logM)。NE 单独输注,与 NG-单甲基-L-精氨酸(l-NMMA,10 mM)或酮咯酸氨丁三醇(KETO,10 mM)共输注。对于每个探针,使用三种常用的分析方法生成剂量-反应曲线:1)无数据处理的非线性建模,2)数据归一化和约束的非线性建模,3)无建模的基线百分比变化。并非所有数据都符合分析 1 的 sigmoidal 剂量-反应曲线,而所有受试者的曲线都符合分析 2 的模型。仅分析符合 sigmoidal 模型的曲线时,与单独使用 NE 相比,NE + KETO 导致 ED50 向左移位,分析 1 和 2(F 检验,P < 0.05),但仅在分析 3 时倾向于使反应向左移位(重复测量 ANOVA,P = 0.08)。阻断剂既不会改变分析 1 中的最大血管收缩剂容量(E(max)),也不会改变分析 3 中从基线开始的 CVC 变化的百分比。总之,尽管两种曲线拟合的建模方法在曲线移位的整体检测和解释上相似,但分析 2 产生了更多的 sigmoidal 曲线。