Naval Research Laboratory, Washington, DC 20375.
IEEE Trans Pattern Anal Mach Intell. 1979 Mar;1(3):306-7. doi: 10.1109/tpami.1979.4766926.
In pattern recognition problems it has been noted that beyond a certain point the inclusion of additional parameters (that have been estimated) leads to higher probabilities of error. A simple problem has been formulated where the probability of error approaches zero as the dimensionality increases and all the parameters are known; on the other hand, the probability of error approaches one-half as the dimensionality increases and parameters are estimated.
在模式识别问题中,人们已经注意到,超过一定的点,额外参数(已估计)的包含会导致更高的错误概率。已经提出了一个简单的问题,其中错误概率随着维度的增加而趋近于零,并且所有参数都是已知的;另一方面,随着维度的增加,参数被估计,错误概率趋近于二分之一。