Suppr超能文献

通过系统比较提取全脑动力学的可解释特征。

Extracting interpretable signatures of whole-brain dynamics through systematic comparison.

作者信息

Bryant Annie G, Aquino Kevin, Parkes Linden, Fornito Alex, Fulcher Ben D

机构信息

School of Physics, The University of Sydney, Camperdown, New South Wales, Australia.

Brain Key Incorporated, San Francisco, California, United States of America.

出版信息

PLoS Comput Biol. 2024 Dec 23;20(12):e1012692. doi: 10.1371/journal.pcbi.1012692. eCollection 2024 Dec.

Abstract

The brain's complex distributed dynamics are typically quantified using a limited set of manually selected statistical properties, leaving the possibility that alternative dynamical properties may outperform those reported for a given application. Here, we address this limitation by systematically comparing diverse, interpretable features of both intra-regional activity and inter-regional functional coupling from resting-state functional magnetic resonance imaging (rs-fMRI) data, demonstrating our method using case-control comparisons of four neuropsychiatric disorders. Our findings generally support the use of linear time-series analysis techniques for rs-fMRI case-control analyses, while also identifying new ways to quantify informative dynamical fMRI structures. While simple statistical representations of fMRI dynamics performed surprisingly well (e.g., properties within a single brain region), combining intra-regional properties with inter-regional coupling generally improved performance, underscoring the distributed, multifaceted changes to fMRI dynamics in neuropsychiatric disorders. The comprehensive, data-driven method introduced here enables systematic identification and interpretation of quantitative dynamical signatures of multivariate time-series data, with applicability beyond neuroimaging to diverse scientific problems involving complex time-varying systems.

摘要

大脑复杂的分布式动力学通常使用一组有限的手动选择的统计属性来量化,这就使得其他动力学属性在给定应用中可能优于已报道的属性。在此,我们通过系统比较静息态功能磁共振成像(rs-fMRI)数据中区域内活动和区域间功能耦合的各种可解释特征来解决这一局限性,并通过对四种神经精神疾病的病例对照比较来展示我们的方法。我们的研究结果总体上支持将线性时间序列分析技术用于rs-fMRI病例对照分析,同时也确定了量化信息丰富的动态功能磁共振成像结构的新方法。虽然功能磁共振成像动力学的简单统计表示表现出惊人的良好效果(例如,单个脑区内的属性),但将区域内属性与区域间耦合相结合通常会提高性能,这突出了神经精神疾病中功能磁共振成像动力学的分布式、多方面变化。这里介绍的全面的、数据驱动的方法能够系统地识别和解释多元时间序列数据的定量动态特征,其适用性不仅限于神经成像,还可应用于涉及复杂时变系统的各种科学问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/235a/11706466/6be0ced3ad6a/pcbi.1012692.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验