Suppr超能文献

预测食物风味和质地的数据与模型的系统综述。

A systematic review of data and models for predicting food flavor and texture.

作者信息

Gunning Michael, Tagkopoulos Ilias

机构信息

Department of Computer Science, University of California, Davis, 95616, USA.

Genome Center, University of California, Davis, 95616, USA.

出版信息

Curr Res Food Sci. 2025 Jun 26;11:101127. doi: 10.1016/j.crfs.2025.101127. eCollection 2025.

Abstract

This review systematically examines the current landscape of data resources and computational models for predicting food flavor and texture. Taste is the most well-defined sensory component, and molecular classification is aligned with the five basic tastes: sweet, sour, bitter, salty, and umami. Odor prediction, while similar in premise, faces greater challenges due to the vast and diverse range of detectable odors and a lack of standardized olfactory metrics. Machine learning models, including graph neural networks and deep learning methods, have shown promise in identifying taste and odor compounds. Texture prediction has seen comparatively less research interest but may prove to be impactful in food quality control pipelines, although more work is needed in creating robust food texture datasets. The review highlights the growing availability of specialized databases which support the development and benchmarking of predictive models. Despite recent advancements, gaps remain in mapping sensory spaces and incorporating receptor-level data. Future directions include creating more extensive and high-quality datasets, improving model explainability, and exploring innovative applications in food design, fragrance, pharmaceuticals, and environmental monitoring. This work provides a comprehensive resource for researchers aiming to advance the field of flavor and texture prediction.

摘要

本综述系统地审视了用于预测食品风味和质地的数据资源及计算模型的现状。味觉是定义最明确的感官成分,分子分类与五种基本味觉相符:甜、酸、苦、咸和鲜味。气味预测虽然前提相似,但由于可检测气味种类繁多且缺乏标准化的嗅觉指标,面临着更大的挑战。包括图神经网络和深度学习方法在内的机器学习模型在识别味觉和气味化合物方面已显示出前景。质地预测的研究兴趣相对较少,但在食品质量控制流程中可能会被证明具有影响力,不过在创建强大的食品质地数据集方面还需要更多工作。该综述强调了支持预测模型开发和基准测试的专业数据库的日益增多。尽管最近取得了进展,但在映射感官空间和纳入受体水平数据方面仍存在差距。未来的方向包括创建更广泛、高质量的数据集,提高模型的可解释性,以及探索在食品设计、香料、制药和环境监测中的创新应用。这项工作为旨在推动风味和质地预测领域发展的研究人员提供了全面的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1723/12274706/96a05d50983e/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验