Suppr超能文献

高斯核在尺度空间滤波中的独特性。

Uniqueness of the gaussian kernel for scale-space filtering.

机构信息

Schlumberger Computer Aided Systems, Palo Alto, CA 94304.

出版信息

IEEE Trans Pattern Anal Mach Intell. 1986 Jan;8(1):26-33. doi: 10.1109/tpami.1986.4767749.

Abstract

Scale-space filtering constructs hierarchic symbolic signal descriptions by transforming the signal into a continuum of versions of the original signal convolved with a kernal containing a scale or bandwidth parameter. It is shown that the Gaussian probability density function is the only kernel in a broad class for which first-order maxima and minima, respectively, increase and decrease when the bandwidth of the filter is increased. The consequences of this result are explored when the signal¿or its image by a linear differential operator¿is analyzed in terms of zero-crossing contours of the transform in scale-space.

摘要

尺度空间滤波通过将信号转换为与包含尺度或带宽参数的核卷积的原始信号的连续版本来构建层次化符号信号描述。结果表明,在一个广泛的类别中,只有高斯概率密度函数是唯一的核,当滤波器的带宽增加时,其一阶极大值和极小值分别增加和减小。当信号(或其通过线性微分算子的图像)根据尺度空间变换的过零点轮廓进行分析时,该结果的结果将被探讨。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验