Suppr超能文献

CAS-SFCM:基于带空间信息的模糊聚类的内容感知图像平滑

CAS-SFCM: Content-Aware Image Smoothing Based on Fuzzy Clustering with Spatial Information.

作者信息

Antunes-Santos Felipe, Lopez-Molina Carlos, Mendioroz Maite, De Baets Bernard

机构信息

Department of Statistics, Computer Science and Mathematics, Public University of Navarre (UPNA), 31006 Pamplona, Spain.

IdiSNA, Navarra Institute for Health Research, NavarraBiomed, Hospital Universitario de Navarra, 31008 Pamplona, Spain.

出版信息

J Imaging. 2025 May 22;11(6):173. doi: 10.3390/jimaging11060173.

Abstract

Image smoothing is a low-level image processing task mainly aimed at homogenizing an image, mitigating noise, or improving the visibility of certain image areas. There exist two main strategies for image smoothing. The first strategy is content-unaware image smoothing. This strategy replicates identical smoothing behavior at every region in the image, hence ignoring any local or semi-local properties of the image. The second strategy is content-aware image smoothing, which takes into account the local properties of the image in order to adapt the smoothing behavior. Such adaptation to local image conditions is intended to avoid the blurring of relevant structures (such as ridges, edges, and blobs) in the image. While the former strategy was ubiquitous in the early years of image processing, the last 20 years have seen an ever-increasing use of the latter, fueled by a combination of greater computational capability and more refined mathematical models. In this work, we propose a novel content-aware image smoothing method based on soft (fuzzy) clustering. Our proposal capitalizes on the strengths of soft clustering to produce content-aware smoothing and allows for the direct configuration of the most relevant parameters for the task: the number of distinctive regions in the image and the relative relevance of spatial and tonal information in the smoothing. The proposed method is put to the test on both artificial and real-world images, combining both qualitative and quantitative analyses. We also propose the use of a local homogeneity measure for the quantitative analysis of image smoothing results. We show that the proposed method is not sensitive to centroid initialization and can be used for both artificial and real-world images.

摘要

图像平滑是一种低级图像处理任务,主要旨在使图像均匀化、减轻噪声或提高某些图像区域的可见性。图像平滑存在两种主要策略。第一种策略是内容无关的图像平滑。这种策略在图像的每个区域复制相同的平滑行为,因此忽略了图像的任何局部或半局部属性。第二种策略是内容感知的图像平滑,它考虑图像的局部属性以调整平滑行为。这种对局部图像条件的调整旨在避免图像中相关结构(如脊线、边缘和斑点)的模糊。虽然前一种策略在图像处理的早期很普遍,但在过去20年中,由于计算能力的提高和更精细的数学模型的结合,后一种策略的使用越来越多。在这项工作中,我们提出了一种基于软(模糊)聚类的新型内容感知图像平滑方法。我们的提议利用软聚类的优势来产生内容感知平滑,并允许直接配置该任务最相关的参数:图像中不同区域的数量以及平滑中空间和色调信息的相对相关性。所提出的方法在人工图像和真实世界图像上都进行了测试,结合了定性和定量分析。我们还提出使用局部均匀性度量来对图像平滑结果进行定量分析。我们表明,所提出的方法对质心初始化不敏感,可用于人工图像和真实世界图像。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f67/12194716/6b9539456228/jimaging-11-00173-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验