LIFIA (IMAG), BP 68, 38402 St.-Martin-d'Heres, France; Robotics Institute, Carnegie-Mellon University, Pittsburgh, PA 15213.
IEEE Trans Pattern Anal Mach Intell. 1987 Jan;9(1):113-21. doi: 10.1109/tpami.1987.4767876.
One approach to pattern classification is to match a structural description of a pattern to models which describe the structural properties of pattern classes. The central problem in structural pattern matching is to determine the correspondence between the symbols which comprise a model and symbols which describe a pattern. The difficulty of determining this correspondence depends critically on the representation that is used to describe patterns. This correspondence presents a probabilistic representation for structural models of pattern classes. Both pattern descriptions and models for pattern classes are based on symbols which represent grayscale information at multiple resolutions. A pattern description is given by a tree of symbols with attribute values. Structural models are represented by a tree of symbols with probabilistic attributes. The position and scale (resolution) of the symbols, as well as other ``features,'' are represented by these attributes. An algorithm is presented for determining the correspondence between symbols in a description of a pattern and symbols in a model of a pattern class. This algorithm uses the connectivity between symbols at different scales to constrain the search for correspondence. An interactive training program for learning models of pattern classes is described, and some conclusions from the work are presented.
一种模式分类方法是将模式的结构描述与描述模式类结构属性的模型进行匹配。结构模式匹配的核心问题是确定构成模型的符号与描述模式的符号之间的对应关系。确定这种对应关系的难度取决于用于描述模式的表示。这种对应关系为模式类的结构模型提供了一种概率表示。模式描述和模式类的模型都是基于符号的,这些符号代表多分辨率的灰度信息。模式描述由具有属性值的符号树给出。结构模型由具有概率属性的符号树表示。符号的位置和比例(分辨率)以及其他“特征”由这些属性表示。提出了一种用于确定模式描述中的符号与模式类模型中的符号之间对应关系的算法。该算法使用不同比例之间符号的连通性来约束对应关系的搜索。描述了用于学习模式类模型的交互式训练程序,并提出了该工作的一些结论。