Erdem Uğur M, Hasselmo Michael E
Center for Memory and Brain and Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.
J Physiol Paris. 2014 Feb;108(1):28-37. doi: 10.1016/j.jphysparis.2013.07.002. Epub 2013 Jul 26.
We propose an extended version of our previous goal directed navigation model based on forward planning of trajectories in a network of head direction cells, persistent spiking cells, grid cells, and place cells. In our original work the animat incrementally creates a place cell map by random exploration of a novel environment. After the exploration phase, the animat decides on its next movement direction towards a goal by probing linear look-ahead trajectories in several candidate directions while stationary and picking the one activating place cells representing the goal location. In this work we present several improvements over our previous model. We improve the range of linear look-ahead probes significantly by imposing a hierarchical structure on the place cell map consistent with the experimental findings of differences in the firing field size and spacing of grid cells recorded at different positions along the dorsal to ventral axis of entorhinal cortex. The new model represents the environment at different scales by populations of simulated hippocampal place cells with different firing field sizes. Among other advantages this model allows simultaneous constant duration linear look-ahead probes at different scales while significantly extending each probe range. The extension of the linear look-ahead probe range while keeping its duration constant also limits the degrading effects of noise accumulation in the network. We show the extended model's performance using an animat in a large open field environment.
我们提出了之前目标导向导航模型的扩展版本,该模型基于在头部方向细胞、持续放电细胞、网格细胞和位置细胞网络中对轨迹进行前瞻性规划。在我们最初的工作中,动画角色通过对新环境的随机探索逐步创建位置细胞地图。在探索阶段之后,动画角色通过在静止时探测几个候选方向上的线性前瞻轨迹,并选择激活代表目标位置的位置细胞的方向,来决定其朝向目标的下一个移动方向。在这项工作中,我们展示了对之前模型的多项改进。我们通过在位置细胞地图上施加一种层次结构,显著提高了线性前瞻探测的范围,这种层次结构与在内嗅皮层背腹轴不同位置记录的网格细胞放电场大小和间距差异的实验结果一致。新模型通过具有不同放电场大小的模拟海马体位置细胞群体,在不同尺度上表示环境。该模型的其他优点包括,它允许在不同尺度上同时进行固定时长线性前瞻探测,同时显著扩展每个探测范围。在保持线性前瞻探测时长不变的情况下扩展其范围,也限制了网络中噪声累积的退化效应。我们在一个大型开阔场地环境中使用动画角色展示了扩展模型的性能。