Suppr超能文献

一种受生物启发的分层目标导向导航模型。

A biologically inspired hierarchical goal directed navigation model.

作者信息

Erdem Uğur M, Hasselmo Michael E

机构信息

Center for Memory and Brain and Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA 02215, USA.

出版信息

J Physiol Paris. 2014 Feb;108(1):28-37. doi: 10.1016/j.jphysparis.2013.07.002. Epub 2013 Jul 26.

Abstract

We propose an extended version of our previous goal directed navigation model based on forward planning of trajectories in a network of head direction cells, persistent spiking cells, grid cells, and place cells. In our original work the animat incrementally creates a place cell map by random exploration of a novel environment. After the exploration phase, the animat decides on its next movement direction towards a goal by probing linear look-ahead trajectories in several candidate directions while stationary and picking the one activating place cells representing the goal location. In this work we present several improvements over our previous model. We improve the range of linear look-ahead probes significantly by imposing a hierarchical structure on the place cell map consistent with the experimental findings of differences in the firing field size and spacing of grid cells recorded at different positions along the dorsal to ventral axis of entorhinal cortex. The new model represents the environment at different scales by populations of simulated hippocampal place cells with different firing field sizes. Among other advantages this model allows simultaneous constant duration linear look-ahead probes at different scales while significantly extending each probe range. The extension of the linear look-ahead probe range while keeping its duration constant also limits the degrading effects of noise accumulation in the network. We show the extended model's performance using an animat in a large open field environment.

摘要

我们提出了之前目标导向导航模型的扩展版本,该模型基于在头部方向细胞、持续放电细胞、网格细胞和位置细胞网络中对轨迹进行前瞻性规划。在我们最初的工作中,动画角色通过对新环境的随机探索逐步创建位置细胞地图。在探索阶段之后,动画角色通过在静止时探测几个候选方向上的线性前瞻轨迹,并选择激活代表目标位置的位置细胞的方向,来决定其朝向目标的下一个移动方向。在这项工作中,我们展示了对之前模型的多项改进。我们通过在位置细胞地图上施加一种层次结构,显著提高了线性前瞻探测的范围,这种层次结构与在内嗅皮层背腹轴不同位置记录的网格细胞放电场大小和间距差异的实验结果一致。新模型通过具有不同放电场大小的模拟海马体位置细胞群体,在不同尺度上表示环境。该模型的其他优点包括,它允许在不同尺度上同时进行固定时长线性前瞻探测,同时显著扩展每个探测范围。在保持线性前瞻探测时长不变的情况下扩展其范围,也限制了网络中噪声累积的退化效应。我们在一个大型开阔场地环境中使用动画角色展示了扩展模型的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53f3/3949664/ed8fa7ed2478/nihms549836f1.jpg

相似文献

1
A biologically inspired hierarchical goal directed navigation model.一种受生物启发的分层目标导向导航模型。
J Physiol Paris. 2014 Feb;108(1):28-37. doi: 10.1016/j.jphysparis.2013.07.002. Epub 2013 Jul 26.
7
Theta phase precession of grid and place cell firing in open environments.开放环境中网格细胞和位置细胞放电的θ相位进动
Philos Trans R Soc Lond B Biol Sci. 2013 Dec 23;369(1635):20120532. doi: 10.1098/rstb.2012.0532. Print 2014 Feb 5.

引用本文的文献

2
4
8
Computational cross-species views of the hippocampal formation.计算跨物种的海马结构视图。
Hippocampus. 2023 May;33(5):586-599. doi: 10.1002/hipo.23535. Epub 2023 Apr 11.

本文引用的文献

2
Membrane potential dynamics of grid cells.网格细胞的膜电位动态。
Nature. 2013 Mar 14;495(7440):199-204. doi: 10.1038/nature11973. Epub 2013 Feb 10.
3
The entorhinal grid map is discretized.内嗅皮层栅格图是离散的。
Nature. 2012 Dec 6;492(7427):72-8. doi: 10.1038/nature11649.
4
Awake hippocampal sharp-wave ripples support spatial memory.清醒状态下海马体尖锐波涟漪支持空间记忆。
Science. 2012 Jun 15;336(6087):1454-8. doi: 10.1126/science.1217230. Epub 2012 May 3.
6
Grid cells use HCN1 channels for spatial scaling.网格细胞利用 HCN1 通道进行空间缩放。
Cell. 2011 Nov 23;147(5):1159-70. doi: 10.1016/j.cell.2011.08.051. Epub 2011 Nov 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验