Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14855-60. doi: 10.1073/pnas.1111577108. Epub 2011 Aug 22.
N(6)-methyladenosine is a nonediting RNA modification found in mRNA of all eukaryotes, from yeast to humans. Although the functional significance of N(6)-methyladenosine is unknown, the Inducer of MEiosis 4 (IME4) gene of Saccharomyces cerevisiae, which encodes the enzyme that catalyzes this modification, is required for gametogenesis. Here we find that the Drosophila IME4 homolog, Dm ime4, is expressed in ovaries and testes, indicating an evolutionarily conserved function for this enzyme in gametogenesis. In contrast to yeast, but as in Arabidopsis, Dm ime4 is essential for viability. Lethality is rescued fully by a wild-type transgenic copy of Dm ime4 but not by introducing mutations shown to abrogate the catalytic activity of yeast Ime4, indicating functional conservation of the catalytic domain. The phenotypes of hypomorphic alleles of Dm ime4 that allow recovery of viable adults reveal critical functions for this gene in oogenesis. Ovarioles from Dm ime4 mutants have fused egg chambers with follicle-cell defects similar to those observed when Notch signaling is defective. Indeed, using a reporter for Notch activation, we find markedly reduced levels of Notch signaling in follicle cells of Dm ime4 mutants. This phenotype of Dm ime4 mutants is rescued by inducing expression of a constitutively activated form of Notch. Our study reveals the function of IME4 in a metazoan. In yeast, this enzyme is responsible for a crucial developmental decision, whereas in Drosophila it appears to target the conserved Notch signaling pathway, which regulates many vital aspects of metazoan development.
N(6)-甲基腺苷是一种在所有真核生物的 mRNA 中发现的非编辑 RNA 修饰,从酵母到人。尽管 N(6)-甲基腺苷的功能意义尚不清楚,但酿酒酵母的减数诱导因子 4(IME4)基因,该基因编码催化这种修饰的酶,是配子发生所必需的。在这里,我们发现果蝇 IME4 同源物 Dm ime4 在卵巢和睾丸中表达,表明该酶在配子发生中的功能在进化上是保守的。与酵母不同,但与拟南芥相同,Dm ime4 对于生存是必需的。野生型转基因 Dm ime4 拷贝可完全挽救致死性,但引入已显示消除酵母 Ime4 催化活性的突变则不能,表明催化结构域的功能保守。允许恢复有活力的成年个体的 Dm ime4 弱等位基因的表型揭示了该基因在卵母细胞发生中的关键功能。Dm ime4 突变体的卵原器具有融合的卵室,其滤泡细胞缺陷类似于 Notch 信号传导缺陷时观察到的缺陷。事实上,使用 Notch 激活的报告基因,我们发现 Dm ime4 突变体的滤泡细胞中 Notch 信号明显降低。Dm ime4 突变体的这种表型可通过诱导 Notch 组成性激活形式的表达来挽救。我们的研究揭示了 IME4 在后生动物中的功能。在酵母中,该酶负责一个关键的发育决定,而在果蝇中,它似乎靶向保守的 Notch 信号通路,该通路调节后生动物发育的许多重要方面。