Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, 1030C MRBIV, 2215 Garland Avenue, Nashville, TN 37232, USA.
Amino Acids. 2012 Feb;42(2-3):627-40. doi: 10.1007/s00726-011-1038-4. Epub 2011 Aug 28.
L-arginine (L-Arg) is metabolized by nitric oxide synthase and arginase enzymes. The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have shown that alterations in L-Arg availability and metabolism into polyamines contribute significantly to the dysregulation of the host immune response to this infection. Nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill H. pylori. There are multiple mechanisms leading to failure of this process, including competition for L-Arg substrate by H. pylori arginase, and induction of host macrophage arginase II (Arg2) and ornithine decarboxylase (ODC). Generation of spermine by ODC inhibits iNOS translation and NO-mediated H. pylori killing. Expression of ODC is dependent on formation of a unique AP-1 complex, leading to upregulation of c-Myc as a transcriptional enhancer. Macrophage apoptosis is mediated by oxidation of spermine via the enzyme spermine oxidase (SMO) that generates hydrogen peroxide (H(2)O(2)), and thus oxidative stress-induced mitochondrial membrane polarization. Our studies have demonstrated that apoptosis occurs through a pERK → pc-Fos/c-Jun → c-Myc → ODC → SMO pathway. In gastric epithelial cells, activation of oxidative stress by H. pylori is dependent on SMO induction and results in both apoptosis and DNA damage, such that inhibition or knockdown of SMO markedly attenuates these events. In summary, L-Arg metabolism by the arginase-ODC pathway and the activation of SMO leads to H. pylori-induced DNA damage and immune dysregulation through polyamine-mediated oxidative stress and impairment of antimicrobial NO synthesis. Our studies indicate novel targets for therapeutic intervention in H. pylori-associated diseases, including gastritis, ulcer disease, and gastric cancer.
精氨酸(L-Arg)通过一氧化氮合酶和精氨酸酶代谢。胃病原体幽门螺杆菌引起消化性溃疡病和胃癌。我们已经表明,L-Arg 可用性的改变和代谢成多胺对宿主免疫反应对这种感染的失调有重要贡献。诱导型一氧化氮合酶(iNOS)产生的一氧化氮(NO)可以杀死 H. pylori。有多种机制导致这个过程失败,包括 H. pylori 精氨酸酶对 L-Arg 底物的竞争,以及宿主巨噬细胞精氨酸酶 II(Arg2)和鸟氨酸脱羧酶(ODC)的诱导。ODC 产生的腐胺抑制 iNOS 翻译和 NO 介导的 H. pylori 杀伤。ODC 的表达依赖于独特的 AP-1 复合物的形成,导致 c-Myc 作为转录增强子的上调。巨噬细胞凋亡是通过酶腐胺氧化酶(SMO)氧化腐胺介导的,该酶产生过氧化氢(H2O2),从而诱导线粒体膜极化的氧化应激。我们的研究表明,凋亡通过 pERK→pc-Fos/c-Jun→c-Myc→ODC→SMO 途径发生。在胃上皮细胞中,H. pylori 引起的氧化应激的激活依赖于 SMO 的诱导,导致凋亡和 DNA 损伤,因此 SMO 的抑制或敲低显著减弱了这些事件。总之,精氨酸酶-ODC 途径的 L-Arg 代谢和 SMO 的激活通过多胺介导的氧化应激和抗菌 NO 合成的损害导致 H. pylori 诱导的 DNA 损伤和免疫失调。我们的研究为 H. pylori 相关疾病(包括胃炎、溃疡病和胃癌)的治疗干预提供了新的靶点。