Suppr超能文献

取代的可滴定侧链在钾通道的束交叉处强制门控运动。

Forced gating motions by a substituted titratable side chain at the bundle crossing of a potassium channel.

机构信息

Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.

出版信息

J Biol Chem. 2011 Oct 21;286(42):36686-93. doi: 10.1074/jbc.M111.249110. Epub 2011 Aug 30.

Abstract

Numerous inwardly rectifying potassium (Kir) channels possess an aromatic residue in the helix bundle crossing region, forming the narrowest pore constriction in crystal structures. However, the role of the Kir channel bundle crossing as a functional gate remains uncertain. We report a unique phenotype of Kir6.2 channels mutated to encode glutamate at this position (F168E). Despite a prediction of four glutamates in close proximity, Kir6.2(F168E) channels are predominantly closed at physiological pH, whereas alkalization causes rapid and reversible channel activation. These findings suggest that F168E glutamates are uncharged at physiological pH but become deprotonated at alkaline pH, forcing channel opening due to mutual repulsion of nearby negatively charged side chains. The potassium channel pore scaffold likely brings these glutamates close together, causing a significant pK(a) shift relative to the free side chain (as seen in the KcsA selectivity filter). Alkalization also shifts the apparent ATP sensitivity of the channel, indicating that forced motion of the bundle crossing is coupled to the ATP-binding site and may resemble conformational changes involved in wild-type Kir6.2 gating. The study demonstrates a novel mechanism for engineering extrinsic control of channel gating by pH and shows that conformational changes in the bundle crossing region are involved in ligand-dependent gating of Kir channels.

摘要

许多内向整流钾 (Kir) 通道在螺旋束交叉区域具有芳香族残基,在晶体结构中形成最窄的孔收缩。然而,Kir 通道束交叉作为功能门的作用仍然不确定。我们报告了一种独特的 Kir6.2 通道表型,其编码该位置的谷氨酸(F168E)。尽管预测有四个谷氨酸紧密相邻,但 Kir6.2(F168E)通道在生理 pH 下主要处于关闭状态,而碱化会导致快速和可逆的通道激活。这些发现表明,F168E 谷氨酸在生理 pH 下不带电荷,但在碱性 pH 下会去质子化,由于附近带负电荷的侧链的相互排斥,迫使通道打开。钾通道孔支架可能使这些谷氨酸紧密聚集在一起,导致与游离侧链相比,pK(a) 发生显著偏移(如在 KcsA 选择性过滤器中所见)。碱化还会改变通道的表观 ATP 敏感性,表明束交叉的强制运动与 ATP 结合位点偶联,并且可能类似于涉及野生型 Kir6.2 门控的构象变化。该研究证明了通过 pH 工程化通道门控的外源性控制的一种新机制,并表明束交叉区域的构象变化参与了 Kir 通道配体依赖性门控。

相似文献

1
Forced gating motions by a substituted titratable side chain at the bundle crossing of a potassium channel.
J Biol Chem. 2011 Oct 21;286(42):36686-93. doi: 10.1074/jbc.M111.249110. Epub 2011 Aug 30.
3
Gating of the ATP-sensitive K+ channel by a pore-lining phenylalanine residue.
Biochim Biophys Acta. 2007 Jan;1768(1):39-51. doi: 10.1016/j.bbamem.2006.06.027. Epub 2006 Jul 28.
4
H bonding at the helix-bundle crossing controls gating in Kir potassium channels.
Neuron. 2007 Aug 16;55(4):602-14. doi: 10.1016/j.neuron.2007.07.026.
5
Role of conserved glycines in pH gating of Kir1.1 (ROMK).
Biophys J. 2006 May 15;90(10):3582-9. doi: 10.1529/biophysj.105.076653. Epub 2006 Mar 13.
6
A Conserved Residue Cluster That Governs Kinetics of ATP-dependent Gating of Kir6.2 Potassium Channels.
J Biol Chem. 2015 Jun 19;290(25):15450-15461. doi: 10.1074/jbc.M114.631960. Epub 2015 May 1.
7
Non-equivalent role of TM2 gating hinges in heteromeric Kir4.1/Kir5.1 potassium channels.
Eur Biophys J. 2008 Feb;37(2):165-71. doi: 10.1007/s00249-007-0206-7. Epub 2007 Jul 27.
8
Regulation of gating by negative charges in the cytoplasmic pore in the Kir2.1 channel.
J Physiol. 2004 Nov 15;561(Pt 1):159-68. doi: 10.1113/jphysiol.2004.072330. Epub 2004 Sep 30.
10
Molecular mechanisms of Slo2 K channel closure.
J Physiol. 2017 Apr 1;595(7):2321-2336. doi: 10.1113/JP273225. Epub 2016 Dec 2.

引用本文的文献

1
Molecular Dynamics Simulations of KirBac1.1 Mutants Reveal Global Gating Changes of Kir Channels.
J Chem Inf Model. 2015 Apr 27;55(4):814-22. doi: 10.1021/acs.jcim.5b00010. Epub 2015 Apr 3.
2
Inward rectifiers and their regulation by endogenous polyamines.
Front Physiol. 2014 Aug 27;5:325. doi: 10.3389/fphys.2014.00325. eCollection 2014.
3
Decomposition of slide helix contributions to ATP-dependent inhibition of Kir6.2 channels.
J Biol Chem. 2013 Aug 9;288(32):23038-49. doi: 10.1074/jbc.M113.485789. Epub 2013 Jun 24.

本文引用的文献

2
Voltage-dependent gating in a "voltage sensor-less" ion channel.
PLoS Biol. 2010 Feb 23;8(2):e1000315. doi: 10.1371/journal.pbio.1000315.
3
Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution.
Science. 2009 Dec 18;326(5960):1668-74. doi: 10.1126/science.1180310.
4
How ATP inhibits the open K(ATP) channel.
J Gen Physiol. 2008 Jul;132(1):131-44. doi: 10.1085/jgp.200709874.
5
Crystal structure of a Kir3.1-prokaryotic Kir channel chimera.
EMBO J. 2007 Sep 5;26(17):4005-15. doi: 10.1038/sj.emboj.7601828. Epub 2007 Aug 16.
6
Kir6.2 channel gating by intracellular protons: subunit stoichiometry for ligand binding and channel gating.
J Membr Biol. 2006;213(3):155-64. doi: 10.1007/s00232-006-0038-x. Epub 2007 Apr 28.
7
pK(a) values for side-chain carboxyl groups of a PGB1 variant explain salt and pH-dependent stability.
Biophys J. 2007 Jan 1;92(1):257-66. doi: 10.1529/biophysj.106.088682. Epub 2006 Oct 13.
8
Gating of the ATP-sensitive K+ channel by a pore-lining phenylalanine residue.
Biochim Biophys Acta. 2007 Jan;1768(1):39-51. doi: 10.1016/j.bbamem.2006.06.027. Epub 2006 Jul 28.
9
Sulfonylureas correct trafficking defects of disease-causing ATP-sensitive potassium channels by binding to the channel complex.
J Biol Chem. 2006 Nov 3;281(44):33403-13. doi: 10.1074/jbc.M605195200. Epub 2006 Sep 6.
10
The polyamine binding site in inward rectifier K+ channels.
J Gen Physiol. 2006 May;127(5):467-80. doi: 10.1085/jgp.200509467. Epub 2006 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验