Suppr超能文献

铁限制诱导大肠杆菌发酵生长过程中优先下调消耗 H2 的反应,而非产生 H2 的反应。

Iron restriction induces preferential down-regulation of H(2)-consuming over H(2)-evolving reactions during fermentative growth of Escherichia coli.

机构信息

Institute for Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str, 3, 06120 Halle (Saale), Germany.

出版信息

BMC Microbiol. 2011 Aug 31;11:196. doi: 10.1186/1471-2180-11-196.

Abstract

BACKGROUND

Escherichia coli synthesizes three anaerobically inducible [NiFe]-hydrogenases (Hyd). All three enzymes have a [NiFe]-cofactor in the large subunit and each enzyme also has an iron-sulfur-containing small subunit that is required for electron transfer. In order to synthesize functionally active Hyd enzymes iron must be supplied to the maturation pathways for both the large and small subunits. The focus of this study was the analysis of the iron uptake systems required for synthesis of active Hyd-1, Hyd-2 and Hyd-3 during fermentative growth.

RESULTS

A transposon-insertion mutant impaired in hydrogenase enzyme activity was isolated. The mutation was in the feoB gene encoding the ferrous iron transport system. The levels of both hydrogen-oxidizing enzymes Hyd-1 and Hyd-2 as determined by specific in-gel activity staining were reduced at least 10-fold in the mutant after anaerobic fermentative growth in minimal medium, while the hydrogen-evolving Hyd-3 activity was less severely affected. Supplementation of the growth medium with ferric iron, which is taken up by e.g. the siderophore enterobactin, resulted in phenotypic complementation of the feoB mutant. Growth in rich medium demonstrated that a mutant lacking both the ferrous iron transport system and enterobactin biosynthesis (entC) was devoid of Hyd-1 and Hyd-2 activity but retained some hydrogen-evolving Hyd-3 activity. Analysis of crude extracts derived from the feoB entC double null mutant revealed that the large subunits of the hydrogen-oxidizing enzymes Hyd-1 and Hyd-2 were absent. Analysis of lacZ fusions demonstrated, however, that expression of the hya, hyb and hyc operons was reduced only by maximally 50% in the mutants compared with the wild type.

CONCLUSIONS

Our findings demonstrate that the ferrous iron transport system is the principal route of iron uptake for anaerobic hydrogenase biosynthesis, with a contribution from the ferric-enterobactin system. Hydrogen-oxidizing enzyme function was abolished in a feoB entC double mutant and this appears to be due to post-translational effects. The retention of residual hydrogen-evolving activity, even in the feoB entC double null mutant suggests that sufficient iron can be scavenged to synthesize this key fermentative enzyme complex in preference to the hydrogen-uptake enzymes.

摘要

背景

大肠杆菌合成三种厌氧诱导的[NiFe]-氢化酶(Hyd)。所有三种酶的大亚基中都含有[NiFe]-辅因子,每种酶都有一个含铁硫的小亚基,这对于电子传递是必需的。为了合成具有功能活性的 Hyd 酶,铁必须供应给大亚基和小亚基的成熟途径。本研究的重点是分析在发酵生长过程中合成活性 Hyd-1、Hyd-2 和 Hyd-3 所需的铁摄取系统。

结果

分离出一株在氢化酶活性方面插入突变的转座子插入突变体。突变发生在编码亚铁铁运输系统的 feoB 基因中。在最小培养基中进行厌氧发酵生长后,突变体中至少 10 倍减少了氢氧化酶 Hyd-1 和 Hyd-2 的水平,而氢释放酶 Hyd-3 的活性受影响较小。在生长培养基中添加铁,例如通过铁载体 enterobactin 摄取,可使 feoB 突变体表型互补。在丰富培养基中的生长表明,既缺乏亚铁铁运输系统又缺乏 enterobactin 生物合成(entC)的突变体缺乏 Hyd-1 和 Hyd-2 的活性,但保留了一些氢释放酶 Hyd-3 的活性。对 feoB entC 双缺失突变体的粗提取物进行分析表明,氢氧化酶 Hyd-1 和 Hyd-2 的大亚基不存在。然而,通过 lacZ 融合分析表明,与野生型相比,突变体中 hya、hyb 和 hyc 操纵子的表达仅减少了 50%。

结论

我们的研究结果表明,亚铁铁运输系统是厌氧氢化酶生物合成的主要铁摄取途径,铁载体-enterobactin 系统有一定贡献。在 feoB entC 双突变体中,氢氧化酶功能被废除,这似乎是由于翻译后效应所致。即使在 feoB entC 双缺失突变体中也保留了残余的氢释放活性,这表明可以摄取足够的铁来合成这种关键的发酵酶复合物,而不是氢摄取酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2325/3176205/bc00042f84c2/1471-2180-11-196-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验