Leiserson Mark D M, Tatar Diana, Cowen Lenore J, Hescott Benjamin J
Department of Computer Science, Tufts University, Medford, Massachusetts 02155, USA.
J Comput Biol. 2011 Nov;18(11):1399-409. doi: 10.1089/cmb.2011.0191. Epub 2011 Sep 1.
A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.
我们开发了一种基于数学上自然的最大割局部搜索框架的新方法,用于在高通量遗传相互作用数据中发现功能相关的模块和BPM基序。与之前同样考虑物理蛋白质-蛋白质相互作用数据的方法不同,我们的方法仅利用遗传相互作用数据;随着高通量遗传相互作用数据在对物理相互作用数据了解较少的情况下变得可用,这一点变得越来越重要。我们将获得的模块和BPM与之前的方法以及不同数据集进行比较。尽管不需要物理相互作用信息,但我们的方法产生的BPM与之前的方法具有竞争力。生物学发现包括预折叠蛋白复合体和SWR亚复合体在芽殖酵母相互作用组中途径缓冲中的潜在全局作用。