Suppr超能文献

使用最大割的局部搜索算法从E-MAP和SGA数据推断补偿机制。

Inferring mechanisms of compensation from E-MAP and SGA data using local search algorithms for max cut.

作者信息

Leiserson Mark D M, Tatar Diana, Cowen Lenore J, Hescott Benjamin J

机构信息

Department of Computer Science, Tufts University, Medford, Massachusetts 02155, USA.

出版信息

J Comput Biol. 2011 Nov;18(11):1399-409. doi: 10.1089/cmb.2011.0191. Epub 2011 Sep 1.

Abstract

A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.

摘要

我们开发了一种基于数学上自然的最大割局部搜索框架的新方法,用于在高通量遗传相互作用数据中发现功能相关的模块和BPM基序。与之前同样考虑物理蛋白质-蛋白质相互作用数据的方法不同,我们的方法仅利用遗传相互作用数据;随着高通量遗传相互作用数据在对物理相互作用数据了解较少的情况下变得可用,这一点变得越来越重要。我们将获得的模块和BPM与之前的方法以及不同数据集进行比较。尽管不需要物理相互作用信息,但我们的方法产生的BPM与之前的方法具有竞争力。生物学发现包括预折叠蛋白复合体和SWR亚复合体在芽殖酵母相互作用组中途径缓冲中的潜在全局作用。

相似文献

1
Inferring mechanisms of compensation from E-MAP and SGA data using local search algorithms for max cut.
J Comput Biol. 2011 Nov;18(11):1399-409. doi: 10.1089/cmb.2011.0191. Epub 2011 Sep 1.
2
Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data.
BMC Bioinformatics. 2013 Jan 18;14:23. doi: 10.1186/1471-2105-14-23.
3
Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.
PLoS One. 2009;4(4):e5364. doi: 10.1371/journal.pone.0005364. Epub 2009 Apr 28.
4
Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast.
Science. 2008 Oct 17;322(5900):405-10. doi: 10.1126/science.1162609. Epub 2008 Sep 25.
5
Towards better accuracy for missing value estimation of epistatic miniarray profiling data by a novel ensemble approach.
Genomics. 2011 May;97(5):257-64. doi: 10.1016/j.ygeno.2011.03.001. Epub 2011 Mar 21.
7
Hierarchical modularity and the evolution of genetic interactomes across species.
Mol Cell. 2012 Jun 8;46(5):691-704. doi: 10.1016/j.molcel.2012.05.028.
9
Systematic identification and correction of annotation errors in the genetic interaction map of Saccharomyces cerevisiae.
Nucleic Acids Res. 2016 Mar 18;44(5):e50. doi: 10.1093/nar/gkv1284. Epub 2015 Nov 23.
10
Modular epistasis in yeast metabolism.
Nat Genet. 2005 Jan;37(1):77-83. doi: 10.1038/ng1489. Epub 2004 Dec 12.

引用本文的文献

2
Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems.
Cell Syst. 2016 Feb 24;2(2):77-88. doi: 10.1016/j.cels.2016.02.003.
3
Constructing module maps for integrated analysis of heterogeneous biological networks.
Nucleic Acids Res. 2014 Apr;42(7):4208-19. doi: 10.1093/nar/gku102. Epub 2014 Feb 4.
4
Comparison of profile similarity measures for genetic interaction networks.
PLoS One. 2013 Jul 10;8(7):e68664. doi: 10.1371/journal.pone.0068664. Print 2013.
5
Genecentric: a package to uncover graph-theoretic structure in high-throughput epistasis data.
BMC Bioinformatics. 2013 Jan 18;14:23. doi: 10.1186/1471-2105-14-23.

本文引用的文献

1
Extracting between-pathway models from E-MAP interactions using expected graph compression.
J Comput Biol. 2011 Mar;18(3):379-90. doi: 10.1089/cmb.2010.0268.
2
HSP90 at the hub of protein homeostasis: emerging mechanistic insights.
Nat Rev Mol Cell Biol. 2010 Jul;11(7):515-28. doi: 10.1038/nrm2918. Epub 2010 Jun 9.
3
Modularity and directionality in genetic interaction maps.
Bioinformatics. 2010 Jun 15;26(12):i228-36. doi: 10.1093/bioinformatics/btq197.
4
Evaluating between-pathway models with expression data.
J Comput Biol. 2010 Mar;17(3):477-87. doi: 10.1089/cmb.2009.0178.
5
The genetic landscape of a cell.
Science. 2010 Jan 22;327(5964):425-31. doi: 10.1126/science.1180823.
6
Towards accurate imputation of quantitative genetic interactions.
Genome Biol. 2009;10(12):R140. doi: 10.1186/gb-2009-10-12-r140. Epub 2009 Dec 10.
7
Fault tolerance in protein interaction networks: stable bipartite subgraphs and redundant pathways.
PLoS One. 2009;4(4):e5364. doi: 10.1371/journal.pone.0005364. Epub 2009 Apr 28.
8
Functional organization of the S. cerevisiae phosphorylation network.
Cell. 2009 Mar 6;136(5):952-63. doi: 10.1016/j.cell.2008.12.039.
9
Conservation and rewiring of functional modules revealed by an epistasis map in fission yeast.
Science. 2008 Oct 17;322(5900):405-10. doi: 10.1126/science.1162609. Epub 2008 Sep 25.
10
From E-MAPs to module maps: dissecting quantitative genetic interactions using physical interactions.
Mol Syst Biol. 2008;4:209. doi: 10.1038/msb.2008.42. Epub 2008 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验