Suppr超能文献

贝叶斯推断在有截尾和删失数据的年龄特定生存中的应用。

Bayesian inference on age-specific survival for censored and truncated data.

机构信息

Max Planck Institute for Demographic Research, Rostock 18057, Germany.

出版信息

J Anim Ecol. 2012 Jan;81(1):139-49. doi: 10.1111/j.1365-2656.2011.01898.x. Epub 2011 Aug 26.

Abstract
  1. Traditional estimation of age-specific survival and mortality rates in vertebrates is limited to individuals with known age. Although this subject has been studied extensively using effective capture-recapture and capture-recovery models, inference remains challenging because of large numbers of incomplete records (i.e. unknown age of many individuals) and because of the inadequate duration of the studies. 2. Here, we present a hierarchical model for capture-recapture/recovery (CRR) data sets with large proportions of unknown times of birth and death. The model uses a Bayesian framework to draw inference on population-level age-specific demographic rates using parametric survival functions and applies this information to reconstruct times of birth and death for individuals with unknown age. 3. We simulated a set of CRR data sets with varying study span and proportions of individuals with known age, and varying recapture and recovery probabilities. We used these data sets to compare our method to a traditional CRR model, which requires knowledge of individual ages. Subsequently, we applied our method to a subset of a long-term CRR data set on Soay sheep. 4. Our results show that this method performs better than the common CRR model when sample sizes are low. Still, our model is sensitive to the choice of priors with low recapture probability and short studies. In such cases, priors that overestimate survival perform better than those that underestimate it. Also, the model was able to estimate accurately ages at death for Soay sheep, with an average error of 0.94 years and to identify differences in mortality rate between sexes. 5. Although many of the problems in the estimation of age-specific survival can be reduced through more efficient sampling schemes, most ecological data sets are still sparse and with a large proportion of missing records. Thus, improved sampling needs still to be combined with statistical models capable of overcoming the unavoidable limitations of any fieldwork. We show that our approach provides reliable estimates of parameters and unknown times of birth and death even with the most incomplete data sets while being flexible enough to accommodate multiple recapture probabilities and covariates.
摘要
  1. 传统的脊椎动物特定年龄生存和死亡率的估计仅限于已知年龄的个体。虽然使用有效的捕获-再捕获和捕获-恢复模型已经对这一主题进行了广泛的研究,但由于大量记录不完整(即许多个体的年龄未知),并且研究的持续时间不足,因此推断仍然具有挑战性。

  2. 在这里,我们提出了一种具有大量未知出生和死亡时间的捕获-再捕获/恢复(CRR)数据集的分层模型。该模型使用贝叶斯框架,使用参数生存函数对群体水平的特定年龄人口统计率进行推断,并将此信息应用于具有未知年龄的个体的出生和死亡时间的重建。

  3. 我们模拟了一组具有不同研究跨度和已知年龄个体比例以及不同再捕获和恢复概率的 CRR 数据集。我们使用这些数据集将我们的方法与需要个体年龄知识的传统 CRR 模型进行比较。随后,我们将我们的方法应用于长期 CRR 数据集的一个子集,该数据集用于研究 Soay 绵羊。

  4. 我们的结果表明,当样本量较小时,该方法比常见的 CRR 模型表现更好。尽管如此,我们的模型对低再捕获概率和短期研究的先验选择很敏感。在这种情况下,高估生存的先验比低估生存的先验表现更好。此外,该模型能够准确估计 Soay 绵羊的死亡年龄,平均误差为 0.94 年,并确定性别之间死亡率的差异。

  5. 尽管通过更有效的抽样方案可以减少特定年龄生存估计中的许多问题,但大多数生态数据集仍然稀疏,并且有很大比例的缺失记录。因此,仍然需要改进采样,并结合能够克服任何实地工作不可避免的局限性的统计模型。我们表明,即使使用最不完整的数据集,我们的方法也可以提供可靠的参数和未知出生和死亡时间的估计,并且足够灵活,可以适应多种再捕获概率和协变量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验