Suppr超能文献

ABGD,用于初步物种界定的自动条码间隙发现。

ABGD, Automatic Barcode Gap Discovery for primary species delimitation.

机构信息

UMR 7138, Muséum National d'Histoire Naturelle, Departement Systématique et Evolution, Paris, France.

出版信息

Mol Ecol. 2012 Apr;21(8):1864-77. doi: 10.1111/j.1365-294X.2011.05239.x. Epub 2011 Aug 29.

Abstract

Within uncharacterized groups, DNA barcodes, short DNA sequences that are present in a wide range of species, can be used to assign organisms into species. We propose an automatic procedure that sorts the sequences into hypothetical species based on the barcode gap, which can be observed whenever the divergence among organisms belonging to the same species is smaller than divergence among organisms from different species. We use a range of prior intraspecific divergence to infer from the data a model-based one-sided confidence limit for intraspecific divergence. The method, called Automatic Barcode Gap Discovery (ABGD), then detects the barcode gap as the first significant gap beyond this limit and uses it to partition the data. Inference of the limit and gap detection are then recursively applied to previously obtained groups to get finer partitions until there is no further partitioning. Using six published data sets of metazoans, we show that ABGD is computationally efficient and performs well for standard prior maximum intraspecific divergences (a few per cent of divergence for the five data sets), except for one data set where less than three sequences per species were sampled. We further explore the theoretical limitations of ABGD through simulation of explicit speciation and population genetics scenarios. Our results emphasize in particular the sensitivity of the method to the presence of recent speciation events, via (unrealistically) high rates of speciation or large numbers of species. In conclusion, ABGD is fast, simple method to split a sequence alignment data set into candidate species that should be complemented with other evidence in an integrative taxonomic approach.

摘要

在未被充分描述的群组中,可以使用 DNA 条码(存在于广泛物种中的短 DNA 序列)将生物体分配到物种中。我们提出了一种自动程序,该程序基于条码间隙将序列分类为假设的物种,只要属于同一物种的生物体之间的差异小于来自不同物种的生物体之间的差异,就可以观察到这种间隙。我们使用一系列的先验种内差异来从数据中推断出基于模型的种内差异单侧置信限。该方法称为自动条码间隙发现(ABGD),然后将条码间隙检测为超出该限制的第一个显著间隙,并使用它来划分数据。然后递归地将限制和间隙检测应用于先前获得的群组,以获得更精细的分区,直到不再进行分区为止。使用六个已发表的后生动物数据集,我们表明 ABGD 在计算上是有效的,并且对于标准的先验最大种内差异(对于五个数据集为几个百分点的差异)表现良好,除了一个数据集,其中每个物种的序列少于三个。我们通过模拟显生和种群遗传学场景进一步探索了 ABGD 的理论局限性。我们的结果特别强调了该方法对近期物种形成事件的敏感性,这是通过(不切实际地)高的物种形成率或大量的物种来实现的。总之,ABGD 是一种快速、简单的方法,可以将序列比对数据集分割为候选物种,应在综合分类学方法中补充其他证据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验