Novartis Pharma AG, Technical Research & Development (TRD), CH-4002 Basel, Switzerland.
J Control Release. 2012 Jan 30;157(2):297-304. doi: 10.1016/j.jconrel.2011.08.023. Epub 2011 Aug 22.
Chitosans are naturally occurring polymers widely used in life science to mediate intracellular uptake of nucleic acids such as siRNA. Four chitosans of fungal origin (Agaricus bisporus; molecular weights MW=44, 63, 93 and 143 kDa) were used in this study and profiled for size, viscosity and hydrodynamic radius using gel permeation chromatography (GPC). Polyplexes made of these chitosans and siRNA were developed and optimized for transfection efficacy in vitro. The characteristics of these polyplexes were low chitosan:siRNA ratios (4-8; N:P) similar positive zeta potential (20-30 mV) and comparable particle sizes (about 150 nm). Endogenous luciferase reporter gene down-regulation in human epithelial H1299 cells at nanomolar concentrations (37.5-150 nM) was significantly stronger for the lower molecular weight chitosans. The impact of these low N:P polyplexes on the cellular viability was minimal also at 150 nM. To help develop an understanding of these differences, an energetic profile of the molecular interactions and polyplex formation was established by isothermal titration calorimetry (ITC). The four polyplexes exhibited strong binding enthalpies delta H(bind)(-84 to -102 kcal/mol) resulting in nanomolar dissociation constants. Intracellular trafficking studies using rhodamine labeled siRNA revealed that polyplexes made from smaller MW chitosans exhibited faster cellular uptake kinetics than their higher MW counterpart. Transmission electron microscopy and small angle X-ray scattering studies (SAXS) revealed that the 44 kDa derived polyplexes exhibited regular spherical structure, whereas the 143 kDa chitosan polyplex was rather irregularly shaped. With regards to adverse effects these low N:P chitosan/siRNA formulations represent an interesting alternative to so far reported chitosan polyplexes that used vast N:P excess to achieve similar bioactivity.
壳聚糖是一种天然存在的聚合物,广泛应用于生命科学领域,用于介导核酸(如 siRNA)的细胞内摄取。本研究使用了四种真菌来源的壳聚糖(双孢蘑菇;分子量 MW=44、63、93 和 143 kDa),并通过凝胶渗透色谱(GPC)对其大小、粘度和流体力学半径进行了分析。制备了这些壳聚糖和 siRNA 的聚合物,并对其体外转染效果进行了优化。这些聚合物的特点是壳聚糖与 siRNA 的比例较低(4-8;N:P)、正 ζ 电位较高(20-30 mV)且粒径相当(约 150nm)。在纳米摩尔浓度(37.5-150 nM)下,人上皮 H1299 细胞内内源荧光素酶报告基因的下调作用在低分子量壳聚糖中更为显著。即使在 150 nM 时,这些低 N:P 聚合物对细胞活力的影响也很小。为了帮助理解这些差异,通过等温滴定微量热法(ITC)建立了分子相互作用和聚合物形成的能量分布。这四种聚合物表现出很强的结合焓 delta H(bind)(-84 至-102 kcal/mol),导致纳米摩尔解离常数。使用罗丹明标记的 siRNA 的细胞内转运研究表明,与高 MW 壳聚糖相比,MW 较小的壳聚糖形成的聚合物具有更快的细胞摄取动力学。透射电子显微镜和小角 X 射线散射研究(SAXS)表明,44 kDa 衍生的聚合物表现出规则的球形结构,而 143 kDa 壳聚糖聚合物则形状不规则。就不良影响而言,与迄今为止报道的使用大量 N:P 过剩来实现类似生物活性的壳聚糖聚合物相比,这些低 N:P 壳聚糖/siRNA 制剂代表了一种有趣的替代方案。