Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
Biomaterials. 2011 Dec;32(34):8892-904. doi: 10.1016/j.biomaterials.2011.08.013. Epub 2011 Aug 31.
Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-scale, fracture properties, evaluated using insitu scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with insitu tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ∼40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-scales, loss of plasticity from suppressed fibrillar sliding at sub-micron scales, and the loss and damage of collagen at the nano-scales, the latter being assessed using Raman and Fourier Transform Infrared spectroscopy and a fluorometric assay.
骨骼由主要由胶原、羟磷灰石和水组成的复杂结构组成,每个层次结构都有助于其强度、延展性和韧性。然而,这些特性会因医疗治疗或骨移植物灭菌的辐射而退化。我们在这里提供了一个机制框架,说明在高达 630 kGy 的 X 射线照射下,辐射如何影响人类皮质骨的性质和特性,范围从特征性(纳米到宏观)长度尺度。从宏观上看,随着辐照水平的增加,骨强度、延展性和抗断裂性逐渐降低。在微米尺度上,使用原位扫描电子显微镜和同步加速器 X 射线计算微断层扫描评估断裂特性,为裂纹如何与骨基质结构相互作用提供了力学信息。在亚微米尺度上,使用同步加速器中的原位拉伸试验在小/宽角 X 射线散射/衍射中评估强度特性,同时在宏观组织、胶原纤维和矿物质中测量应变。与健康骨骼相比,结果表明,在 70 kGy 暴露后,纤维应变降低了约 40%,这与胶原的显著硬化和降解一致。我们将机械性能的辐照诱导劣化归因于多个长度尺度的机制,包括微米尺度上裂纹路径的变化、亚微米尺度上抑制的纤维滑动导致的塑性丧失,以及纳米尺度上胶原的损失和损伤,后者使用拉曼和傅里叶变换红外光谱和荧光测定法进行评估。