Smaldon James, Romero-Campero Francisco J, Fernández Trillo Francisco, Gheorghe Marian, Alexander Cameron, Krasnogor Natalio
Syst Synth Biol. 2010 Sep;4(3):157-79. doi: 10.1007/s11693-010-9060-5. Epub 2010 Jul 18.
In this paper we propose a new bottom-up approach to cellular computing, in which computational chemical processes are encapsulated within liposomes. This "liposome logic" approach (also called vesicle computing) makes use of supra-molecular chemistry constructs, e.g. protocells, chells, etc. as minimal cellular platforms to which logical functionality can be added. Modeling and simulations feature prominently in "top-down" synthetic biology, particularly in the specification, design and implementation of logic circuits through bacterial genome reengineering. The second contribution in this paper is the demonstration of a novel set of tools for the specification, modelling and analysis of "bottom-up" liposome logic. In particular, simulation and modelling techniques are used to analyse some example liposome logic designs, ranging from relatively simple NOT gates and NAND gates to SR-Latches, D Flip-Flops all the way to 3 bit ripple counters. The approach we propose consists of specifying, by means of P systems, gene regulatory network-like systems operating inside proto-membranes. This P systems specification can be automatically translated and executed through a multiscaled pipeline composed of dissipative particle dynamics (DPD) simulator and Gillespie's stochastic simulation algorithm (SSA). Finally, model selection and analysis can be performed through a model checking phase. This is the first paper we are aware of that brings to bear formal specifications, DPD, SSA and model checking to the problem of modeling target computational functionality in protocells. Potential chemical routes for the laboratory implementation of these simulations are also discussed thus for the first time suggesting a potentially realistic physiochemical implementation for membrane computing from the bottom-up.
在本文中,我们提出了一种新的自底向上的细胞计算方法,其中计算化学过程被封装在脂质体内。这种“脂质体逻辑”方法(也称为囊泡计算)利用超分子化学结构,例如原细胞、化学细胞等作为最小的细胞平台,可在其上添加逻辑功能。建模和模拟在“自上而下”的合成生物学中占据重要地位,特别是在通过细菌基因组改造来指定、设计和实现逻辑电路方面。本文的第二个贡献是展示了一套用于“自底向上”脂质体逻辑的指定、建模和分析的新颖工具。具体而言,使用模拟和建模技术来分析一些脂质体逻辑设计示例,从相对简单的非门和与非门到SR锁存器、D触发器,一直到3位纹波计数器。我们提出的方法包括通过P系统指定在原膜内运行的类似基因调控网络的系统。这种P系统规范可以通过由耗散粒子动力学(DPD)模拟器和 Gillespie随机模拟算法(SSA)组成的多尺度管道自动翻译和执行。最后,可以通过模型检查阶段进行模型选择和分析。这是我们所知的第一篇将形式规范、DPD、SSA和模型检查应用于原细胞中目标计算功能建模问题的论文。本文还首次讨论了在实验室实现这些模拟的潜在化学途径,从而为自底向上的膜计算提出了一种潜在的现实物理化学实现方案。