Suppr超能文献

聚合物囊泡介导的小干扰RNA和反义寡核苷酸递送

Polymersome delivery of siRNA and antisense oligonucleotides.

作者信息

Kim Younghoon, Tewari Manorama, Pajerowski J David, Cai Shenshen, Sen Shamik, Williams Jason H, Sirsi Shashank R, Lutz Gordon J, Discher Dennis E

机构信息

Department of Chemical and Biomolecular Engineering and Pennsylvania Muscle Institute, University of Pennsylvania, Philadelphia, USA.

出版信息

J Control Release. 2009 Mar 4;134(2):132-40. doi: 10.1016/j.jconrel.2008.10.020. Epub 2008 Nov 12.

Abstract

siRNA and antisense oligonucleotides, AON, have similar size and negative charge and are often packaged for in vitro delivery with cationic lipids or polymers-but exposed positive charge is problematic in vivo. Here we demonstrate loading and functional delivery of RNAi and AON with non-ionic, nano-transforming polymersomes. These degradable carriers are taken up passively by cultured cells after which the vesicles transform into micelles that allow endolysosomal escape and delivery of either siRNA into cytosol for mRNA knockdown or else AON into the nucleus for exon skipping within pre-mRNA. Polymersome-mediated knockdown appears as efficient as common cationic-lipid transfection and about half as effective as Lenti-virus after sustained selection. For AON, initial results also show that intramuscular injection into a mouse model of muscular dystrophy leads to the expected protein expression, which occurs along the entire length of muscle. The lack of cationic groups in antisense polymersomes together with initial tests of efficacy suggests broader utility of these non-viral carriers.

摘要

小干扰RNA(siRNA)和反义寡核苷酸(AON)具有相似的大小和负电荷,并且通常用阳离子脂质或聚合物进行体外递送包装——但暴露的正电荷在体内存在问题。在这里,我们展示了用非离子型纳米转化聚合物囊泡加载和功能性递送RNA干扰(RNAi)和AON。这些可降解载体被培养细胞被动摄取,之后囊泡转变为胶束,从而实现内溶酶体逃逸,并将siRNA递送至细胞质以敲低mRNA,或将AON递送至细胞核以在信使前体RNA(pre-mRNA)内进行外显子跳跃。聚合物囊泡介导的敲低效果与普通阳离子脂质转染一样有效,在持续筛选后约为慢病毒效果的一半。对于AON,初步结果还表明,向肌肉萎缩症小鼠模型中进行肌肉注射会导致预期的蛋白质表达,且这种表达发生在肌肉的整个长度上。反义聚合物囊泡中缺乏阳离子基团以及初步的疗效测试表明,这些非病毒载体具有更广泛的用途。

相似文献

1
Polymersome delivery of siRNA and antisense oligonucleotides.
J Control Release. 2009 Mar 4;134(2):132-40. doi: 10.1016/j.jconrel.2008.10.020. Epub 2008 Nov 12.
2
Efficient nuclear delivery and nuclear body localization of antisense oligo-nucleotides using degradable polymersomes.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:4350-3. doi: 10.1109/IEMBS.2006.259861.
6
Dual exon skipping in myostatin and dystrophin for Duchenne muscular dystrophy.
BMC Med Genomics. 2011 Apr 20;4:36. doi: 10.1186/1755-8794-4-36.
9
Specific removal of the nonsense mutation from the mdx dystrophin mRNA using antisense oligonucleotides.
Neuromuscul Disord. 1999 Jul;9(5):330-8. doi: 10.1016/s0960-8966(99)00010-3.
10

引用本文的文献

1
Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment.
Beilstein J Nanotechnol. 2025 Mar 27;16:435-463. doi: 10.3762/bjnano.16.34. eCollection 2025.
2
Nanomedicine Therapies for Pediatric Diseases.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Sep-Oct;16(5):e1996. doi: 10.1002/wnan.1996.
3
Polyglycerol-Shelled Reduction-Sensitive Polymersome for DM1 Delivery to HER-2-Positive Breast Cancer.
Biomacromolecules. 2024 Jul 8;25(7):4440-4448. doi: 10.1021/acs.biomac.4c00512. Epub 2024 Jun 22.
4
USE OF ARTIFICIAL CELLS AS DRUG CARRIERS.
Mater Chem Front. 2021 Sep 21;5(18):6672-6692. doi: 10.1039/d1qm00717c. Epub 2021 Jul 16.
5
Use of Glycine to Augment Exon Skipping and Cell Therapies for Duchenne Muscular Dystrophy.
Methods Mol Biol. 2023;2587:165-182. doi: 10.1007/978-1-0716-2772-3_10.
6
Polymeric nanoparticles-Promising carriers for cancer therapy.
Front Bioeng Biotechnol. 2022 Oct 7;10:1024143. doi: 10.3389/fbioe.2022.1024143. eCollection 2022.
7
Nanocarriers for delivery of siRNA as gene silencing mediator.
EXCLI J. 2022 Aug 1;21:1028-1052. doi: 10.17179/excli2022-4975. eCollection 2022.
8
Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications.
Angew Chem Int Ed Engl. 2022 Dec 5;61(49):e202203942. doi: 10.1002/anie.202203942. Epub 2022 Oct 26.
9
Research Progress and Prospects for Polymeric Nanovesicles in Anticancer Drug Delivery.
Front Bioeng Biotechnol. 2022 Feb 11;10:850366. doi: 10.3389/fbioe.2022.850366. eCollection 2022.
10
Fate of Antibody-Targeted Ultrasmall Gold Nanoparticles in Cancer Cells after Receptor-Mediated Uptake.
ACS Nano. 2021 Jun 22;15(6):9495-9508. doi: 10.1021/acsnano.0c08128. Epub 2021 May 20.

本文引用的文献

1
Sequence- and target-independent angiogenesis suppression by siRNA via TLR3.
Nature. 2008 Apr 3;452(7187):591-7. doi: 10.1038/nature06765. Epub 2008 Mar 26.
2
Local dystrophin restoration with antisense oligonucleotide PRO051.
N Engl J Med. 2007 Dec 27;357(26):2677-86. doi: 10.1056/NEJMoa073108.
3
Protein precipitation and denaturation by dimethyl sulfoxide.
Biophys Chem. 2007 Dec;131(1-3):62-70. doi: 10.1016/j.bpc.2007.09.004. Epub 2007 Sep 19.
4
Micelles of different morphologies--advantages of worm-like filomicelles of PEO-PCL in paclitaxel delivery.
Pharm Res. 2007 Nov;24(11):2099-109. doi: 10.1007/s11095-007-9335-z. Epub 2007 Jun 13.
6
Plasmid DNA encapsulation within cationic diblock copolymer vesicles for gene delivery.
J Phys Chem B. 2006 Aug 3;110(30):14550-6. doi: 10.1021/jp057363b.
7
Polymersomes.
Annu Rev Biomed Eng. 2006;8:323-41. doi: 10.1146/annurev.bioeng.8.061505.095838.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验