Suppr超能文献

脊髓损伤:从炎症到胶质瘢痕

Spinal cord injury: From inflammation to glial scar.

作者信息

Leal-Filho Manoel Baldoino

机构信息

Department of Neurosurgery, Casamater Hospital, Teresina, PI, Brazil.

出版信息

Surg Neurol Int. 2011;2:112. doi: 10.4103/2152-7806.83732. Epub 2011 Aug 13.

Abstract

BACKGROUND

Glial scar (GS) is the most important inhibitor factor to neuroregeneration after spinal cord injury (SCI) and behaves as a tertiary lesion. The present review of the literature searched for representative studies concerning GS and therapeutic strategies to neuroregeneration.

METHODS

The author used the PubMed database and Google scholar to search articles published in the last 20 years. Key words used were SCI, spinal cord (SC) inflammation, GS, and SCI treatment.

RESULTS

Both inflammation and GS are considered important events after SCI. Despite the fact that firstly they seem to cause benefit, in the end they cause more harm than good to neuroregeneration. Each stage has its own aspects under the influence of the immune system causing inflammation, from the primary to secondary lesion and from those to GS (tertiary lesion).

CONCLUSION

Future studies should stress the key points where and when GS presents itself as an inhibitory factor to neuroregeneration. Considering GS as an important event after SCI, the author defends GS as being a tertiary lesion. Current strategies are presented with emphasis on stem cells and drug therapy. A better understanding will permit the development of a therapeutic basis in the treatment of the SCI patients considering each stage of the lesion, with emphasis on GS and neuroregeneration.

摘要

背景

胶质瘢痕(GS)是脊髓损伤(SCI)后神经再生最重要的抑制因素,表现为三级损伤。本综述检索了有关GS及神经再生治疗策略的代表性研究。

方法

作者使用PubMed数据库和谷歌学术搜索过去20年发表的文章。使用的关键词为SCI、脊髓(SC)炎症、GS和SCI治疗。

结果

炎症和GS均被认为是SCI后的重要事件。尽管它们最初似乎有益,但最终对神经再生弊大于利。在免疫系统引起炎症的影响下,从原发性损伤到继发性损伤,再到GS(三级损伤),每个阶段都有其自身特点。

结论

未来的研究应强调GS在何时何地成为神经再生抑制因素的关键点。考虑到GS是SCI后的一个重要事件,作者认为GS是一种三级损伤。目前的策略重点介绍了干细胞和药物治疗。更好地理解将有助于在考虑损伤各阶段的情况下,为SCI患者的治疗建立治疗基础,重点是GS和神经再生。

相似文献

1
Spinal cord injury: From inflammation to glial scar.
Surg Neurol Int. 2011;2:112. doi: 10.4103/2152-7806.83732. Epub 2011 Aug 13.
4
The role of timing in the treatment of spinal cord injury.
Biomed Pharmacother. 2017 Aug;92:128-139. doi: 10.1016/j.biopha.2017.05.048. Epub 2017 May 20.
5
Delving into the recent advancements of spinal cord injury treatment: a review of recent progress.
Neural Regen Res. 2022 Feb;17(2):283-291. doi: 10.4103/1673-5374.317961.
8
The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury.
Exp Neurol. 2016 Apr;278:27-41. doi: 10.1016/j.expneurol.2016.01.023. Epub 2016 Jan 30.
10
Intravenous delivery of microRNA-133b along with Argonaute-2 enhances spinal cord recovery following cervical contusion in mice.
Spine J. 2020 Jul;20(7):1138-1151. doi: 10.1016/j.spinee.2020.02.019. Epub 2020 Mar 4.

引用本文的文献

3
Function of GSK‑3 signaling in spinal cord injury (Review).
Exp Ther Med. 2023 Oct 3;26(5):541. doi: 10.3892/etm.2023.12240. eCollection 2023 Nov.
4
Micromotion Derived Fluid Shear Stress Mediates Peri-Electrode Gliosis through Mechanosensitive Ion Channels.
Adv Sci (Weinh). 2023 Sep;10(27):e2301352. doi: 10.1002/advs.202301352. Epub 2023 Jul 30.
5
Gene Therapy Using Efficient Direct Lineage Reprogramming Technology for Neurological Diseases.
Nanomaterials (Basel). 2023 May 19;13(10):1680. doi: 10.3390/nano13101680.
6
A New Paradigm in Spinal Cord Injury Therapy: from Cell-free Treatment to Engineering Modifications.
CNS Neurol Disord Drug Targets. 2024;23(5):656-673. doi: 10.2174/1871527322666230418090857.
7
RIPK1 inhibition contributes to lysosomal membrane stabilization in ischemic astrocytes via a lysosomal Hsp70.1B-dependent mechanism.
Acta Pharmacol Sin. 2023 Aug;44(8):1549-1563. doi: 10.1038/s41401-023-01069-8. Epub 2023 Apr 13.
8
Pyroptosis in spinal cord injury.
Front Cell Neurosci. 2022 Nov 17;16:949939. doi: 10.3389/fncel.2022.949939. eCollection 2022.
9
Clemastine in remyelination and protection of neurons and skeletal muscle after spinal cord injury.
Neural Regen Res. 2023 May;18(5):940-946. doi: 10.4103/1673-5374.355749.
10
Targeting miR-21 in spinal cord injuries: a game-changer?
Mol Med. 2022 Sep 23;28(1):118. doi: 10.1186/s10020-022-00546-w.

本文引用的文献

1
Umbilical cord blood banking: an update.
J Assist Reprod Genet. 2011 Aug;28(8):669-76. doi: 10.1007/s10815-011-9577-x. Epub 2011 May 27.
2
Control of the embryonic stem cell state.
Cell. 2011 Mar 18;144(6):940-54. doi: 10.1016/j.cell.2011.01.032.
3
Stem cells for spinal cord regeneration: Current status.
Surg Neurol Int. 2010 Dec 25;1:93. doi: 10.4103/2152-7806.74240.
6
Scarring after spinal cord injury.
J Neurosurg Spine. 2010 Aug;13(2):165-7; discussion 167-8. doi: 10.3171/2009.11.SPINE09862.
10
Spinal cord injury reveals multilineage differentiation of ependymal cells.
PLoS Biol. 2008 Jul 22;6(7):e182. doi: 10.1371/journal.pbio.0060182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验