SFI Research Centre for Medical Devices (CÚRAM), University of Galway, Galway, H91 W2TY, Ireland.
Galway Neuroscience Centre, University of Galway, Galway, H91 W2TY, Ireland.
Adv Sci (Weinh). 2023 Sep;10(27):e2301352. doi: 10.1002/advs.202301352. Epub 2023 Jul 30.
The development of bioelectronic neural implant technologies has advanced significantly over the past 5 years, particularly in brain-machine interfaces and electronic medicine. However, neuroelectrode-based therapies require invasive neurosurgery and can subject neural tissues to micromotion-induced mechanical shear, leading to chronic inflammation, the formation of a peri-electrode void and the deposition of reactive glial scar tissue. These structures act as physical barriers, hindering electrical signal propagation and reducing neural implant functionality. Although well documented, the mechanisms behind the initiation and progression of these processes are poorly understood. Herein, in silico analysis of micromotion-induced peri-electrode void progression and gliosis is described. Subsequently, ventral mesencephalic cells exposed to milliscale fluid shear stress in vitro exhibited increased expression of gliosis-associated proteins and overexpression of mechanosensitive ion channels PIEZO1 (piezo-type mechanosensitive ion channel component 1) and TRPA1 (transient receptor potential ankyrin 1), effects further confirmed in vivo in a rat model of peri-electrode gliosis. Furthermore, in vitro analysis indicates that chemical inhibition/activation of PIEZO1 affects fluid shear stress mediated astrocyte reactivity in a mitochondrial-dependent manner. Together, the results suggest that mechanosensitive ion channels play a major role in the development of a peri-electrode void and micromotion-induced glial scarring at the peri-electrode region.
在过去的 5 年中,生物电子神经植入技术得到了显著发展,特别是在脑机接口和电子医学领域。然而,基于神经电极的治疗方法需要进行侵入性神经外科手术,并且可能导致神经组织受到微运动诱导的机械剪切,从而引发慢性炎症、形成电极周围空隙和反应性胶质瘢痕组织的沉积。这些结构充当物理屏障,阻碍电信号的传播并降低神经植入物的功能。尽管这些问题已经得到充分的记录,但对这些过程的起始和进展的机制仍了解甚少。本文通过计算机模拟分析了微运动诱导的电极周围空隙进展和神经胶质增生。随后,在体外将间脑腹侧细胞暴露于毫尺度流体剪切力下,发现神经胶质增生相关蛋白的表达增加,并且机械敏感离子通道 PIEZO1(压电型机械敏感离子通道成分 1)和 TRPA1(瞬时受体电位锚蛋白 1)过度表达,在电极周围神经胶质增生的大鼠模型中进一步证实了这些作用。此外,体外分析表明,PIEZO1 的化学抑制/激活以依赖线粒体的方式影响流体剪切力介导的星形胶质细胞反应。总之,研究结果表明,机械敏感离子通道在电极周围空隙的形成以及微运动诱导的神经胶质瘢痕形成中起着重要作用。