Suppr超能文献

用于消除细胞阻塞的微纳加工磁致动器的研发

Development of Microfabricated Magnetic Actuators for Removing Cellular Occlusion.

作者信息

Lee Selene A, Lee Hyowon, Pinney James R, Khialeeva Elvira, Bergsneider Marvin, Judy Jack W

机构信息

Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, CA 90095, USA.

出版信息

J Micromech Microeng. 2011 May;21(5):54006. doi: 10.1088/0960-1317/21/5/054006.

Abstract

Here we report on the development of torsional magnetic microactuators for displacing biological materials in implantable catheters. Static and dynamic behaviors of the devices were characterized in air and in fluid using optical experimental methods. The devices were capable of achieving large deflections (>60°) and had resonant frequencies that ranged from 70 Hz to 1.5 kHz in fluid. The effect of long-term actuation (>2.5 · 10(8) cycles) was quantified using resonant shift as the metric (Δf < 2%). Cell-clearing capabilities of the devices were evaluated by examining the effect of actuation on a layer of aggressively growing adherent cells. On average, actuated microdevices removed 37.4% of the adherent cell layer grown over the actuator surface. The effect of actuation time, deflection angle, and beam geometry were evaluated. The experimental results indicate that physical removal of adherent cells at the microscale is feasible using magnetic microactuation.

摘要

在此,我们报告用于在可植入导管中移动生物材料的扭转磁性微致动器的研发情况。利用光学实验方法对这些装置在空气中和流体中的静态和动态行为进行了表征。这些装置能够实现大角度偏转(>60°),并且在流体中的共振频率范围为70赫兹至1.5千赫兹。使用共振频率偏移作为指标(Δf < 2%)对长期驱动(>2.5·10⁸ 次循环)的影响进行了量化。通过检查驱动对一层生长旺盛的贴壁细胞的影响来评估这些装置的细胞清除能力。平均而言,被驱动的微型装置去除了在致动器表面生长的贴壁细胞层的37.4%。评估了驱动时间、偏转角和梁几何形状的影响。实验结果表明,使用磁性微驱动在微观尺度上物理去除贴壁细胞是可行的。

相似文献

1
Development of Microfabricated Magnetic Actuators for Removing Cellular Occlusion.
J Micromech Microeng. 2011 May;21(5):54006. doi: 10.1088/0960-1317/21/5/054006.
2
Functional evaluation of magnetic microactuators for removing biological accumulation: an in vitro study.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:947-50. doi: 10.1109/IEMBS.2008.4649311.
3
Anti-biofouling implantable catheter using thin-film magnetic microactuators.
Sens Actuators B Chem. 2018 Nov 10;273:1694-1704. doi: 10.1016/j.snb.2018.07.044. Epub 2018 Jul 24.
4
Polyimide-based magnetic microactuators for biofouling removal.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5757-5760. doi: 10.1109/EMBC.2016.7592035.
5
Piezoresistor-Embedded Multifunctional Magnetic Microactuators for Implantable Self-Clearing Catheter.
IEEE Sens J. 2019 Feb 15;19(4):1373-1378. doi: 10.1109/JSEN.2018.2880576.
6
Towards smart self-clearing glaucoma drainage device.
Microsyst Nanoeng. 2018 Nov 5;4:35. doi: 10.1038/s41378-018-0032-3. eCollection 2018.
7
MRI compatibility of microfabricated magnetic actuators for implantable catheters: Mechanical evaluations.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:907-10. doi: 10.1109/IEMBS.2010.5627830.
8
Mechanical Evaluation of Unobstructing Magnetic Microactuators for Implantable Ventricular Catheters.
J Microelectromech Syst. 2014 Aug;23(4):795-802. doi: 10.1109/JMEMS.2014.2321377. Epub 2014 May 16.
9
Evaluation of magnetic resonance imaging issues for implantable microfabricated magnetic actuators.
Biomed Microdevices. 2014 Feb;16(1):153-61. doi: 10.1007/s10544-013-9815-3.
10
Microheater Actuators as a Versatile Platform for Strain Engineering in 2D Materials.
Nano Lett. 2020 Jul 8;20(7):5339-5345. doi: 10.1021/acs.nanolett.0c01706. Epub 2020 Jun 9.

引用本文的文献

2
Anti-biofouling implantable catheter using thin-film magnetic microactuators.
Sens Actuators B Chem. 2018 Nov 10;273:1694-1704. doi: 10.1016/j.snb.2018.07.044. Epub 2018 Jul 24.
3
Polymer-Based MEMS Electromagnetic Actuator for Biomedical Application: A Review.
Polymers (Basel). 2020 May 22;12(5):1184. doi: 10.3390/polym12051184.
4
Piezoresistor-Embedded Multifunctional Magnetic Microactuators for Implantable Self-Clearing Catheter.
IEEE Sens J. 2019 Feb 15;19(4):1373-1378. doi: 10.1109/JSEN.2018.2880576.
5
Mechanical Evaluation of Unobstructing Magnetic Microactuators for Implantable Ventricular Catheters.
J Microelectromech Syst. 2014 Aug;23(4):795-802. doi: 10.1109/JMEMS.2014.2321377. Epub 2014 May 16.
6
Polyimide-based magnetic microactuators for biofouling removal.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:5757-5760. doi: 10.1109/EMBC.2016.7592035.
7
Low-cost rapid prototyping of liquid crystal polymer based magnetic microactuators for glaucoma drainage devices.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:4212-4215. doi: 10.1109/EMBC.2016.7591656.
8
Astrocyte-induced Reelin expression drives proliferation of Her2 breast cancer metastases.
Clin Exp Metastasis. 2017 Feb;34(2):185-196. doi: 10.1007/s10585-017-9839-9. Epub 2017 Feb 17.
9
Evaluation of magnetic resonance imaging issues for implantable microfabricated magnetic actuators.
Biomed Microdevices. 2014 Feb;16(1):153-61. doi: 10.1007/s10544-013-9815-3.
10
New and improved ways to treat hydrocephalus: Pursuit of a smart shunt.
Surg Neurol Int. 2013 Mar 19;4(Suppl 1):S38-50. doi: 10.4103/2152-7806.109197. Print 2013.

本文引用的文献

2
Functional evaluation of magnetic microactuators for removing biological accumulation: an in vitro study.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:947-50. doi: 10.1109/IEMBS.2008.4649311.
3
Magnetic microactuators for MEMS-enabled ventricular catheters for hydrocephalus.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2494-7. doi: 10.1109/IEMBS.2006.259879.
4
Effective mass and flow patterns of fluids surrounding microcantilevers.
Ultramicroscopy. 2006 Jun-Jul;106(8-9):789-94. doi: 10.1016/j.ultramic.2005.11.011. Epub 2006 Apr 18.
5
Shunt infection.
J Neurosurg. 2005 Sep;103(3 Suppl):293; author reply 293-4. doi: 10.3171/ped.2005.103.3.0293.
6
Hydromer-coated catheters to prevent shunt infection?
J Neurosurg. 2005 Mar;102(2 Suppl):207-12. doi: 10.3171/jns.2005.102.2.0207.
8
Lack of benefit of endoscopic ventriculoperitoneal shunt insertion: a multicenter randomized trial.
J Neurosurg. 2003 Feb;98(2):284-90. doi: 10.3171/jns.2003.98.2.0284.
9
Long-term follow-up data from the Shunt Design Trial.
Pediatr Neurosurg. 2000 Nov;33(5):230-236. doi: 10.1159/000055960.
10
Long-term follow-up of shunting therapy.
Childs Nerv Syst. 1999 Nov;15(11-12):711-7. doi: 10.1007/s003810050460.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验