Lee Selene A, Lee Hyowon, Pinney James R, Khialeeva Elvira, Bergsneider Marvin, Judy Jack W
Biomedical Engineering Interdepartmental Program, University of California, Los Angeles, CA 90095, USA.
J Micromech Microeng. 2011 May;21(5):54006. doi: 10.1088/0960-1317/21/5/054006.
Here we report on the development of torsional magnetic microactuators for displacing biological materials in implantable catheters. Static and dynamic behaviors of the devices were characterized in air and in fluid using optical experimental methods. The devices were capable of achieving large deflections (>60°) and had resonant frequencies that ranged from 70 Hz to 1.5 kHz in fluid. The effect of long-term actuation (>2.5 · 10(8) cycles) was quantified using resonant shift as the metric (Δf < 2%). Cell-clearing capabilities of the devices were evaluated by examining the effect of actuation on a layer of aggressively growing adherent cells. On average, actuated microdevices removed 37.4% of the adherent cell layer grown over the actuator surface. The effect of actuation time, deflection angle, and beam geometry were evaluated. The experimental results indicate that physical removal of adherent cells at the microscale is feasible using magnetic microactuation.
在此,我们报告用于在可植入导管中移动生物材料的扭转磁性微致动器的研发情况。利用光学实验方法对这些装置在空气中和流体中的静态和动态行为进行了表征。这些装置能够实现大角度偏转(>60°),并且在流体中的共振频率范围为70赫兹至1.5千赫兹。使用共振频率偏移作为指标(Δf < 2%)对长期驱动(>2.5·10⁸ 次循环)的影响进行了量化。通过检查驱动对一层生长旺盛的贴壁细胞的影响来评估这些装置的细胞清除能力。平均而言,被驱动的微型装置去除了在致动器表面生长的贴壁细胞层的37.4%。评估了驱动时间、偏转角和梁几何形状的影响。实验结果表明,使用磁性微驱动在微观尺度上物理去除贴壁细胞是可行的。