Suppr超能文献

理解听觉频谱-时间感受野及其通过有效编码原理随输入统计数据的变化。

Understanding auditory spectro-temporal receptive fields and their changes with input statistics by efficient coding principles.

机构信息

Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, PR China.

出版信息

PLoS Comput Biol. 2011 Aug;7(8):e1002123. doi: 10.1371/journal.pcbi.1002123. Epub 2011 Aug 18.

Abstract

Spectro-temporal receptive fields (STRFs) have been widely used as linear approximations to the signal transform from sound spectrograms to neural responses along the auditory pathway. Their dependence on statistical attributes of the stimuli, such as sound intensity, is usually explained by nonlinear mechanisms and models. Here, we apply an efficient coding principle which has been successfully used to understand receptive fields in early stages of visual processing, in order to provide a computational understanding of the STRFs. According to this principle, STRFs result from an optimal tradeoff between maximizing the sensory information the brain receives, and minimizing the cost of the neural activities required to represent and transmit this information. Both terms depend on the statistical properties of the sensory inputs and the noise that corrupts them. The STRFs should therefore depend on the input power spectrum and the signal-to-noise ratio, which is assumed to increase with input intensity. We analytically derive the optimal STRFs when signal and noise are approximated as Gaussians. Under the constraint that they should be spectro-temporally local, the STRFs are predicted to adapt from being band-pass to low-pass filters as the input intensity reduces, or the input correlation becomes longer range in sound frequency or time. These predictions qualitatively match physiological observations. Our prediction as to how the STRFs should be determined by the input power spectrum could readily be tested, since this spectrum depends on the stimulus ensemble. The potentials and limitations of the efficient coding principle are discussed.

摘要

时频谱响应(STRFs)已被广泛用作从声谱图到听觉通路中神经反应的信号变换的线性近似。它们对刺激的统计属性(如声音强度)的依赖通常通过非线性机制和模型来解释。在这里,我们应用了一种有效的编码原理,该原理已成功用于理解视觉处理早期的感受野,以便从计算的角度理解 STRFs。根据这一原理,STRFs 是大脑接收到的信息量最大化和表示和传输此信息所需的神经活动成本最小化之间的最佳权衡的结果。这两个术语都取决于感官输入的统计特性和破坏它们的噪声。因此,STRFs 应该取决于输入功率谱和信噪比,而信噪比被假设随输入强度增加。当信号和噪声被近似为高斯分布时,我们从分析上推导出最优的 STRFs。在它们应该是时频谱局部的约束下,当输入强度降低或输入相关性在声音频率或时间上变得更长时,STRFs 被预测从带通滤波器转变为低通滤波器。这些预测与生理观察定性匹配。我们对 STRFs 应该如何由输入功率谱决定的预测很容易被测试,因为这个谱取决于刺激的集合。讨论了有效编码原理的潜力和局限性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4957/3158037/7e3939854295/pcbi.1002123.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验