Department of Inorganic Chemistry, Faculty of Science, Universita Karlova (Charles University), Hlavova, 2030, 128 43, Prague 2, Czech Republic.
Dalton Trans. 2011 Oct 21;40(39):10131-46. doi: 10.1039/c1dt10543d. Epub 2011 Sep 2.
A new class of macrocyclic ligands based on 1-oxa-4,7-diazacyclononane was synthesized and their Mn(2+) complexes were investigated with respect to stability and relaxation properties. Each ligand has two pendant arms involving carboxylic (H(2)L(1)--1-oxa-4,7-diazacyclononane-4,7-diacetic acid), phosphonic (H(4)L(2)--1-oxa-4,7-diazacyclononane-4,7-bis(methylenephosphonic acid)), phosphinic (H(2)L(3)--1-oxa-4,7-diazacyclononane-4,7-bis(methylenephosphinic acid)) or phenylphosphinic (H(2)L(4)--1-oxa-4,7-diazacyclononane-4,7-bis[methylene(phenyl)phosphinic acid]) acid moieties. H(2)L(3) and H(2)L(4) were synthesized for the first time. The crystal structure of the Mn(2+) complex with H(2)L(4) confirmed a coordination number of 6 for Mn(2+). The protonation constants of all ligands and the stability constants of their complexes with Mn(2+) and some biologically or biomedically relevant metal ions were determined by potentiometry. The protonation sequence of H(2)L(3) was followed by (1)H and (31)P NMR titration and the second protonation step was attributed to the second macrocyclic nitrogen atom. The potentiometric data revealed a relatively low thermodynamic stability of the Mn(2+) complexes with all ligands investigated. For H(2)L(3) and H(2)L(4), full Mn(2+) complexation cannot be achieved even with 100% ligand excess. The transmetallation of MnL(1) and MnL(2) with Zn(2+) was too fast to be followed at pH 6. Variable temperature (1)H NMRD and (17)O NMR measurements have been performed on MnL(1) and MnL(2) to provide information on water exchange and rotational dynamics. The (17)O chemical shifts indicate hydration equilibrium between mono- and bishydrated species for MnL(1), while MnL(2) is monohydrated. The water exchange is considerably faster on MnL(1) (k(ex)(298) = 1.2 × 10(9) s(-1)) than on MnL(2) (k(ex)(298) = 1.2 × 10(7) s(-1)). Small endogenous anions (phosphate, carbonate, citrate) do not replace the coordinated water in either of the complexes, but they induce their slow decomposition. All Mn(2+) complexes are stable toward air-oxidation.
基于 1-氧杂-4,7-二氮杂环壬烷的一类新的大环配体被合成,并研究了它们的 Mn(2+)配合物的稳定性和弛豫性质。每个配体都有两个悬垂臂,涉及羧酸(H(2)L(1)--1-氧杂-4,7-二氮杂环壬烷-4,7-二乙酸)、膦酸(H(4)L(2)--1-氧杂-4,7-二氮杂环壬烷-4,7-双(亚甲基膦酸))、次膦酸(H(2)L(3)--1-氧杂-4,7-二氮杂环壬烷-4,7-双(亚甲基次膦酸))或苯次膦酸(H(2)L(4)--1-氧杂-4,7-二氮杂环壬烷-4,7-双[亚甲基(苯基)次膦酸])酸部分。H(2)L(3)和 H(2)L(4)是首次合成的。Mn(2+)配合物与 H(2)L(4)的晶体结构证实 Mn(2+)的配位数为 6。通过电位法测定了所有配体的质子化常数和它们与 Mn(2+)以及一些生物或生物医学相关金属离子的配合物的稳定常数。通过(1)H 和(31)P NMR 滴定跟踪了 H(2)L(3)的质子化顺序,第二步质子化归因于第二个大环氮原子。通过电位法得到的结果表明,所研究的所有配体的 Mn(2+)配合物的热力学稳定性都相对较低。对于 H(2)L(3)和 H(2)L(4),即使使用 100%配体过量,也不能完全实现 Mn(2+)的配合。在 pH 6 时,MnL(1)和 MnL(2)与 Zn(2+)的转金属化太快,无法跟踪。对 MnL(1)和 MnL(2)进行了变温(1)H NMRD 和(17)O NMR 测量,以提供有关水交换和旋转动力学的信息。(17)O 化学位移表明 MnL(1)存在单水合和双水合物种之间的水合平衡,而 MnL(2)则是一水合的。MnL(1)的水交换速度明显快于 MnL(2)(k(ex)(298) = 1.2 × 10(9) s(-1))(k(ex)(298) = 1.2 × 10(7) s(-1))。较小的内源性阴离子(磷酸盐、碳酸盐、柠檬酸盐)不会取代配合物中的配位水,但会诱导其缓慢分解。所有的 Mn(2+)配合物都对空气氧化稳定。