Gale Eric M, Mukherjee Shreya, Liu Cynthia, Loving Galen S, Caravan Peter
The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School , 149 Thirteenth Street, Suite 2301, Charlestown, Massachusetts 02129, United States.
Inorg Chem. 2014 Oct 6;53(19):10748-61. doi: 10.1021/ic502005u. Epub 2014 Sep 16.
A library of 10 Mn-containing complexes capable of switching reversibly between the Mn(II) and Mn(III) oxidation states was prepared and evaluated for potential usage as MRI reporters of tissue redox activity. We synthesized N-(2-hydroxybenzyl)-N,N',N'-ethylenediaminetriacetic acid (HBET) and N-(2-hydroxybenzyl-N,N',N'-trans-1,2-cyclohexylenediaminetriacetic acid (CyHBET) ligands functionalized (-H, -OMe, -NO2) at the 5-position of the aromatic ring. The Mn(II) complexes of all ligands and the Mn(III) complexes of the 5-H and 5-NO2 functionalized ligands were synthesized and isolated, but the Mn(III) complexes with the 5-OMe functionalized ligands were unstable. (1)H relaxivity of the 10 isolable complexes was measured at pH 7.4 and 37 °C, 1.4 T. Thermodynamic stability, pH-dependent complex speciation, hydration state, water exchange kinetics of the Mn(II) complexes, and pseudo-first order reduction kinetics of the Mn(III) complexes were studied using a combination of pH-potentiometry, UV-vis spectroscopy, and (1)H and (17)O NMR measurements. The effects of ligand structural and electronic modifications on the Mn(II/III) redox couple were studied by cyclic voltammetry. The Mn(II) complexes are potent relaxation agents as compared to the corresponding Mn(III) species with Mn(II)(CyHBET)(H2O) exhibiting a 7.5-fold higher relaxivity (3.3 mM(-1) s(-1)) than the oxidized form (0.4 mM(-1) s(-1)). At pH 7.4, Mn(II) exists as a mixture of fully deprotonated (ML) and monoprotonated (HML) complexes and Mn(II) complex stability decreases as the ligands become more electron-releasing (pMn for 10 μM Mn(II)(CyHBET-R')(H2O) decreases from 7.6 to 6.2 as R' goes from -NO2 to -OMe, respectively). HML speciation increases as the electron-releasing nature of the phenolato-O donor increases. The presence of a water coligand is maintained upon conversion from HML to ML, but the water exchange rate of ML is faster by up to 2 orders of magnitude (k(ex)(310) for HMn(II)(CyHBET)(H2O) and Mn(II)(CyHBET)(H2O) are 1.2 × 10(8) and 1.0 × 10(10) s(-1), respectively). The Mn(II/III) redox potential can be tuned over a range of 0.30 V (E(1/2) = 0.27-0.57 V) through electronic modifications to the 5-substituent of the aromatic ligand component. However, care must be taken in tuning the ligand electronics to avoid Mn(III)-ligand autoredox. Taken together, these results serve to establish criteria for optimizing Mn(III) versus Mn(II) relaxivity differentials, complex stability, and Mn(II/III) redox potential.
制备了一个包含10种含锰配合物的库,这些配合物能够在Mn(II)和Mn(III)氧化态之间可逆切换,并评估了其作为组织氧化还原活性MRI报告分子的潜在用途。我们合成了在芳香环5位官能化(-H、-OMe、-NO2)的N-(2-羟基苄基)-N,N',N'-乙二胺三乙酸(HBET)和N-(2-羟基苄基-N,N',N'-反式-1,2-环己二胺三乙酸(CyHBET)配体。合成并分离了所有配体的Mn(II)配合物以及5-H和5-NO2官能化配体的Mn(III)配合物,但5-OMe官能化配体的Mn(III)配合物不稳定。在pH 7.4、37 °C、1.4 T条件下测量了10种可分离配合物的(1)H弛豫率。使用pH电位滴定法、紫外可见光谱法以及(1)H和(17)O NMR测量相结合的方法,研究了Mn(II)配合物的热力学稳定性、pH依赖的配合物形态、水合状态、水交换动力学以及Mn(III)配合物的准一级还原动力学。通过循环伏安法研究了配体结构和电子修饰对Mn(II/III)氧化还原对的影响。与相应的Mn(III)物种相比,Mn(II)配合物是有效的弛豫剂,Mn(II)(CyHBET)(H2O)的弛豫率(3.3 mM(-1) s(-1))比氧化形式(0.4 mM(-1) s(-1))高7.5倍。在pH 7.4时,Mn(II)以完全去质子化(ML)和单质子化(HML)配合物的混合物形式存在,并且随着配体的供电子性增强,Mn(II)配合物的稳定性降低(对于10 μM Mn(II)(CyHBET-R')(H2O),当R'从-NO2变为-OMe时,pMn从7.6降至6.2)。随着酚氧供体的供电子性增加,HML形态增加。从HML转化为ML时,水共配体的存在得以维持,但ML的水交换速率快达2个数量级(HMn(II)(CyHBET)(H2O)和Mn(II)(CyHBET)(H2O)的k(ex)(310)分别为1.2 × 10(8)和1.0 × 10(10) s(-1))。通过对芳香配体组分的5-取代基进行电子修饰,Mn(II/III)氧化还原电位可在0.30 V范围内调节(E(1/2) = 0.27 - 0.57 V)。然而,在调节配体电子性质时必须小心,以避免Mn(III)-配体自身氧化还原。综上所述,这些结果有助于建立优化Mn(III)与Mn(II)弛豫率差异、配合物稳定性以及Mn(II/III)氧化还原电位的标准。