Lawless Jerald F, Yilmaz Yildiz E
Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
Biom J. 2011 Sep;53(5):779-96. doi: 10.1002/bimj.201000131. Epub 2011 Aug 24.
Sequentially observed survival times are of interest in many studies but there are difficulties in analyzing such data using nonparametric or semiparametric methods. First, when the duration of followup is limited and the times for a given individual are not independent, induced dependent censoring arises for the second and subsequent survival times. Non-identifiability of the marginal survival distributions for second and later times is another issue, since they are observable only if preceding survival times for an individual are uncensored. In addition, in some studies a significant proportion of individuals may never have the first event. Fully parametric models can deal with these features, but robustness is a concern. We introduce a new approach to address these issues. We model the joint distribution of the successive survival times by using copula functions, and provide semiparametric estimation procedures in which copula parameters are estimated without parametric assumptions on the marginal distributions. This provides more robust estimates and checks on the fit of parametric models. The methodology is applied to a motivating example involving relapse and survival following colon cancer treatment.
在许多研究中,相继观察到的生存时间是令人感兴趣的,但使用非参数或半参数方法分析此类数据存在困难。首先,当随访期有限且给定个体的时间不独立时,对于第二个及后续生存时间会出现诱导依存删失。第二个及更晚时间的边际生存分布的不可识别性是另一个问题,因为只有当个体的先前生存时间未被删失时它们才是可观测的。此外,在一些研究中,很大一部分个体可能从未经历首次事件。完全参数模型可以处理这些特征,但稳健性是一个问题。我们引入一种新方法来解决这些问题。我们通过使用copula函数对连续生存时间的联合分布进行建模,并提供半参数估计程序,其中在不对边际分布做参数假设的情况下估计copula参数。这提供了更稳健的估计以及对参数模型拟合的检验。该方法应用于一个涉及结肠癌治疗后复发和生存的激励性示例。