Suppr超能文献

评估两个事件时间之间的关联,观察值存在信息性删失。

Evaluating Association Between Two Event Times with Observations Subject to Informative Censoring.

作者信息

Li Dongdong, Hu X Joan, Wang Rui

机构信息

Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA.

Department of Statistics and Actuarial Science, Simon Fraser University, British Columbia, Canada.

出版信息

J Am Stat Assoc. 2023;118(542):1282-1294. doi: 10.1080/01621459.2021.1990766. Epub 2021 Nov 30.

Abstract

This article is concerned with evaluating the association between two event times without specifying the joint distribution parametrically. This is particularly challenging when the observations on the event times are subject to informative censoring due to a terminating event such as death. There are few methods suitable for assessing covariate effects on association in this context. We link the joint distribution of the two event times and the informative censoring time using a nested copula function. We use flexible functional forms to specify the covariate effects on both the marginal and joint distributions. In a semiparametric model for the bivariate event time, we estimate simultaneously the association parameters, the marginal survival functions, and the covariate effects. A byproduct of the approach is a consistent estimator for the induced marginal survival function of each event time conditional on the covariates. We develop an easy-to-implement pseudolikelihood-based inference procedure, derive the asymptotic properties of the estimators, and conduct simulation studies to examine the finite-sample performance of the proposed approach. For illustration, we apply our method to analyze data from the breast cancer survivorship study that motivated this research. Supplementary materials for this article are available online.

摘要

本文关注的是在不参数化指定联合分布的情况下,评估两个事件时间之间的关联。当由于诸如死亡等终止事件导致事件时间的观测受到信息删失时,这尤其具有挑战性。在这种情况下,几乎没有适合评估协变量对关联影响的方法。我们使用嵌套的Copula函数将两个事件时间的联合分布与信息删失时间联系起来。我们使用灵活的函数形式来指定协变量对边际分布和联合分布的影响。在一个用于双变量事件时间的半参数模型中,我们同时估计关联参数、边际生存函数和协变量效应。该方法的一个副产品是基于协变量条件下每个事件时间的诱导边际生存函数的一致估计量。我们开发了一种易于实现的基于伪似然的推断程序,推导了估计量的渐近性质,并进行了模拟研究以检验所提出方法的有限样本性能。为了说明,我们应用我们的方法来分析激发本研究的乳腺癌生存研究的数据。本文的补充材料可在线获取。

相似文献

5
Semiparametric Model for Bivariate Survival Data Subject to Biased Sampling.存在偏倚抽样的双变量生存数据的半参数模型
J R Stat Soc Series B Stat Methodol. 2019 Apr;81(2):409-429. doi: 10.1111/rssb.12308. Epub 2019 Jan 6.
6
Semiparametric copula-based regression modeling of semi-competing risks data.基于半参数copula的半竞争风险数据回归建模
Commun Stat Theory Methods. 2022;51(22):7830-7845. doi: 10.1080/03610926.2021.1881122. Epub 2021 Feb 9.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验