Suppr超能文献

突变二聚体界面调节细菌小分子多药耐药蛋白的底物外排。

Modulation of substrate efflux in bacterial small multidrug resistance proteins by mutations at the dimer interface.

机构信息

Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8.

出版信息

J Bacteriol. 2011 Nov;193(21):5929-35. doi: 10.1128/JB.05846-11. Epub 2011 Sep 2.

Abstract

Bacteria evade the effects of cytotoxic compounds through the efflux activity of membrane-bound transporters such as the small multidrug resistance (SMR) proteins. Consisting typically of ca. 110 residues with four transmembrane (TM) α-helices, crystallographic studies have shown that TM helix 1 (TM1) through TM helix 3 (TM3) of each monomer create a substrate binding "pocket" within the membrane bilayer, while a TM4-TM4 interaction accounts for the primary dimer formation. Previous work from our lab has characterized a highly conserved small-residue heptad motif in the Halobacterium salinarum transporter Hsmr as (90)GLXLIXXGV(98) that lies along the TM4-TM4 dimer interface of SMR proteins as required for function. Focusing on conserved positions 91, 93, 94, and 98, we substituted the naturally occurring Hsmr residue for Ala, Phe, Ile, Leu, Met, and Val at each position in the Hsmr TM4-TM4 interface. Large-residue replacements were studied for their ability to dimerize on SDS-polyacrylamide gels, to bind the cytotoxic compound ethidium bromide, and to confer resistance by efflux. Although the relative activity of mutants did not correlate with dimer strength for all mutants, all functional mutants lay within 10% of dimerization relative to the wild type (WT), suggesting that the optimal dimer strength at TM4 is required for proper efflux. Furthermore, nonfunctional substitutions at the center of the dimerization interface that do not alter dimer strength suggest a dynamic TM4-TM4 "pivot point" that responds to the efflux requirements of different substrates. This functionally critical region represents a potential target for inhibiting the ability of bacteria to evade the effects of cytotoxic compounds.

摘要

细菌通过膜结合转运蛋白(如小多重耐药(SMR)蛋白)的外排活性来逃避细胞毒性化合物的作用。晶体结构研究表明,每个单体的典型由约 110 个残基组成,具有四个跨膜(TM)α-螺旋,TM 螺旋 1(TM1)至 TM 螺旋 3(TM3)通过在膜双层内创建一个底物结合“口袋”,而 TM4-TM4 相互作用则构成了主要的二聚体形成。我们实验室之前的工作已经在嗜盐菌 Hsmr 转运蛋白中鉴定了一个高度保守的小残基七肽基序(90)GLXLIXXGV(98),该基序存在于 SMR 蛋白的 TM4-TM4 二聚体界面上,是功能所必需的。我们集中研究了保守位置 91、93、94 和 98,在 Hsmr TM4-TM4 界面上用 Ala、Phe、Ile、Leu、Met 和 Val 替代了天然存在的 Hsmr 残基。我们研究了大残基取代物在 SDS-聚丙烯酰胺凝胶上二聚化的能力、结合细胞毒性化合物溴化乙锭的能力以及通过外排赋予抗性的能力。尽管所有突变体的相对活性与其二聚化强度都没有相关性,但所有功能性突变体相对于野生型(WT)的二聚化程度都在 10%以内,这表明 TM4 处的最佳二聚化强度是适当外排所必需的。此外,在二聚化界面中心不改变二聚化强度的非功能性取代表明存在一个动态的 TM4-TM4“枢轴点”,它响应不同底物的外排要求。这个功能关键区域代表了抑制细菌逃避细胞毒性化合物作用的能力的潜在靶标。

相似文献

2
The assembly motif of a bacterial small multidrug resistance protein.一种细菌小多药耐药蛋白的组装基序。
J Biol Chem. 2009 Apr 10;284(15):9870-5. doi: 10.1074/jbc.M900182200. Epub 2009 Feb 18.

引用本文的文献

2
Structure of the multidrug transporter and its use for inhibitor peptide design.多药转运蛋白的结构及其在抑制剂肽设计中的应用。
Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):E7932-E7941. doi: 10.1073/pnas.1802177115. Epub 2018 Aug 6.
5
EmrE dimerization depends on membrane environment.EmrE二聚化取决于膜环境。
Biochim Biophys Acta. 2014 Jul;1838(7):1817-22. doi: 10.1016/j.bbamem.2014.03.013. Epub 2014 Mar 26.

本文引用的文献

2
Control of membrane protein topology by a single C-terminal residue.单个 C 末端残基控制膜蛋白拓扑结构。
Science. 2010 Jun 25;328(5986):1698-700. doi: 10.1126/science.1188950. Epub 2010 May 27.
3
4
In vitro unfolding and refolding of the small multidrug transporter EmrE.小多药转运蛋白EmrE的体外去折叠与重折叠
J Mol Biol. 2009 Nov 6;393(4):815-32. doi: 10.1016/j.jmb.2009.08.039. Epub 2009 Aug 21.
5
Multidrug resistance in bacteria.细菌中的多重耐药性
Annu Rev Biochem. 2009;78:119-46. doi: 10.1146/annurev.biochem.78.082907.145923.
6
The assembly motif of a bacterial small multidrug resistance protein.一种细菌小多药耐药蛋白的组装基序。
J Biol Chem. 2009 Apr 10;284(15):9870-5. doi: 10.1074/jbc.M900182200. Epub 2009 Feb 18.
10
X-ray structure of EmrE supports dual topology model.EmrE的X射线结构支持双拓扑模型。
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):18999-9004. doi: 10.1073/pnas.0709387104. Epub 2007 Nov 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验